Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Синтез полиэфиров гидроксипроизводных жирных кислот (полигидроксиалканоатов) и характеристика состава липидов сине-зеленых, светящихся и водородокисляющих прокариот Калачева Галина Сергеевна

Данная диссертационная работа должна поступить в библиотеки в ближайшее время
Уведомить о поступлении

Диссертация, - 480 руб., доставка 1-3 часа, с 10-19 (Московское время), кроме воскресенья

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Калачева Галина Сергеевна. Синтез полиэфиров гидроксипроизводных жирных кислот (полигидроксиалканоатов) и характеристика состава липидов сине-зеленых, светящихся и водородокисляющих прокариот: автореферат дис. ... доктора биологических наук: 03.01.06 / Калачева Галина Сергеевна;[Место защиты: Институт биофизики СО РАН].- Красноярск, 2013

Введение к работе

Актуальность темы. Многообразие форм живой материи и новые знания в области физики и химии живых систем позволяют конструировать биологические системы различной степени сложности и организации для синтеза широчайшего спектра макромолекул. Ценным продуктом биотехнологии являются резервные соединения липидной природы - полимеры гидроксипроизводных жирных кислот (полигидроксиалканоаты, ПГА), которые обладают широким спектром ценных свойств, включая биосовместимость и биоразрушаемость, и перспективны для различных сфер применения (Anderson, Dawes, 1990; Madison, Huisman, 1999; Steinbchel, Ltke-Everson, 2003; Chen, 2010; Волова, Шишацкая, 2011).

Микроорганизмы являются источником для получения разнообразных целевых продуктов пищевого, кормового, медицинского и технического назначения. Знание закономерностей влияния физико-химических условий среды на рост и синтез клеточных макромолекул является научной основой для разработки новых биотехнологий. Процессы микробного синтеза делятся на два типа: 1) связанные с ростом клеток и образованием биомассы и происходящие со скоростью размножения клеток; 2) и происходящие или ускоряющиеся при замедлении скорости роста клеток (Перт, 1978; Работнова, 1975, 1984). Оптимизация обоих типов процессов осуществляется различными путями в зависимости от того, насколько совпадают скорости роста конкретного продуцента со скоростью синтеза макромолекул той или иной природы. Процесс микробного роста – это процесс синтеза первичных метаболитов (аминокислот, органических кислот, витаминов, нуклеотидов, промежуточных продуктов катаболизма) и их сборка в основные клеточные макромолекулы (белки, нуклеиновые кислоты). Оптимизация накопления биомассы клеток в культуре и синтеза первичных продуктов обмена сводится к оптимизации условий питания и созданию условий для сбалансированного роста продуцента. Накопление продуктов обмена запасной природы (полифосфатов, полисахаров, липидов) имеет место при несбалансированном росте вследствие исчерпания из среды какого-либо компонента питания для клеток и ограничения роста и синтеза основных (азотсодержащих) клеточных компонентов. Оптимизация процесса синтеза запасных соединений более сложна, так как требует специальных знаний о закономерностях образования этих макромолекул и специфических подходов в каждом конкретном случае. При ограничении роста микроорганизмов субстратными компонентами происходит замедление скорости роста клеток, сопровождающееся значительными изменениями химического состава, главным образом, соотношения основных и запасных макромолекул. Выявление принципиальных закономерностей этих изменений открывает широкие возможности для направленного синтеза клеточных макромолекул и получения целевых продуктов микробиологического процесса.

Изучение фундаментальной основы для разработки эффективных технологий получения целевых продуктов требует комплексных подходов. Ключевые задачи, решение которых необходимо для разработки и реализации эффективных технологий биосинтеза полигидрокисалканоатов, вытекают из следующих особенностей биотехнологии этих ценных макромолекул:

Первое, прокариотические микроорганизмы синтезируют полимеры гидроксипроизводных жирных кислот (ПГА) в специфических условиях несбалансированного роста в качестве эндогенного депо энергии и углерода. Эти условия специфичны: для одних продуцентов таковыми является дефицит азота в среде, для других – дефицит фосфатов, кислорода или иных компонентов субстрата (Lee, 1996; Steinbchel, Fchstenbusch, 1998; Kessler, Witholt, 2001; Park et al., 2011). Поэтому для эффективного получения ПГА необходим поиск и оценка новых продуцентов и выявление факторов, максимизирующих выходы полимеров.

Второе, ПГА – это семейство полимеров различного состава, физико-химические свойства которых (молекулярная масса, кристалличность, скорости разрушения в биологических средах) значительно варьируют в зависимости от химического строения (Cox 1994; Ashraf et al., 1999; Chia et al., 2010). Выявление микроорганизмов и условий, позволяющих получать полимеры различного химического состава – необходимая часть разработки способов синтеза новых полимеров с заданными свойствами.

Третье, масштабы производства и широкого применения ПГА во многом зависят от их стоимости, определяемой, прежде всего, видом и стоимостью используемых субстратов (Hepner, 1996; Hazenberg, Witholt, 1997; Choi, Lee, 1999). Поэтому изыскание штаммов-продуцентов, способных синтезировать ПГА на доступном сырье, включая отходы производств, - важная задача биотехнологии этих ценных макромолекул.

Это определило направление исследований настоящей работы, ориентированной на выявление новых штаммов-продуцентов и комплексное исследование закономерностей и условий эффективного синтеза ПГА.

Цель и задачи исследования – поиск новых продуцентов ПГА среди представителей фото- и хемолитоавтотрофных прокариотических микроорганизмов и выявление факторов, усиливающих продукцию полигидроксиалканоатов в качестве научной основы для эффективной технологии биосинтеза.

Для достижения цели сформулированы следующие задачи:

- выбор штаммов, обладающих способностью к синтезу и внутриклеточной аккумуляции ПГА среди сине-зеленых, светящихся, аэробных карбоксидобактерий и водородокисляющих прокариот;

- сравнительное исследование особенностей состава липидов и выходов ПГА у сине-зеленых, светящихся и водородокисляющих прокариот – потенциальных продуцентов ПГА;

- изучение влияния условий культивирования на синтез внутриклеточных компонентов запасной и основной природы и выявление факторов, усиливающих продукцию ПГА у отобранных штаммов-продуцентов;

- исследование закономерностей функционирования клеточного цикла ПГА, протекторной роли и влияния ПГА на физиолого-биохимические характеристики штамма-продуцента;

- определение условий для синтеза полимеров различной химической структуры в качестве научной основы для эффективной продукции ПГА, в том числе на новых субстратах.

Научная новизна. Получены новые данные по составу липидов светящихся, водород- и СО-окисляющих бактерий – потенциальных продуцентов ПГА. Установлен характер ответа культур бактерий на воздействие условий, заключающийся в изменении состава жирных кислот липидов как фактора адаптации к воздействию экстремальных факторов. Неоптимальные значения физических параметров среды (температура, рН), условия газового субстрата (Н2, СО2, О2) и присутствие ингибитора роста (СО) не вызывают существенных перестроек конструктивного метаболизма. При лимитировании роста бактерий минеральными макроэлементами (N, S, P, K, Mg) происходит перераспределение в составе клеточных макромолекул в сторону усиления синтеза резервных соединений липидной природы – полигидроксиалканоатов (ПГА). Выявлена взаимосвязь между физиологическим состоянием бактерий Ralstonia eutropha, внутриклеточным пулом полимера 3-гидроксимасляной кислоты (П3ГБ) и активностью ключевых ферментов клеточного цикла П3ГБ. Представлены доказательства обратимости физиологического состояния неделящихся клеток, заполненных гранулами полимера на 90 %. Доказана возможность синтеза природными штаммами прокариот гетерополимерных ПГА, содержащих в своем составе коротко - и среднецепочечные мономеры.

Практическая значимость. Комплексное исследование микробиологических процессов синтеза ПГА обеспечило разработку и реализацию технологии получения ценных полимеров различного состава в условиях опытного производства на различных субстратах, включая уникальный процесс синтеза ПГА на синтез-газе из бурых углей. Полученные экспериментальные ПГА позволили организовать широкие исследования полимеров и изделий из них для различных сфер применения.

Положения, выносимые на защиту:

1. К наиболее перспективным продуцентам ПГА относятся водородокисляющие бактерии и, в меньшей степени, светящиеся бактерии.

2. Адаптивная реакция к воздействию экстремальных факторов проявляется на уровне мембран: стимулируется синтез циклопропановых кислот, варьирует насыщенность липидов. Отклонения физических параметров среды (температура, рН) от оптимальных значений и присутствие ингибитора роста (СО) не вызывают существенных перестроек конструктивного метаболизма. При лимитировании роста бактерий минеральными макроэлементами происходит перераспределение в составе клеточных макромолекул: на фоне снижения концентрации основных (азотсодержащих) компонентов отмечено усиление синтеза резервных макромолекул - соединений липидной природы – полигидроксиалканоатов.

3. Доказана обратимость физиологического состояния неделящихся клеток, практически полностью заполненных гранулами полимера, то есть возможность их перехода к активному физиологическому состоянию в результате деградации и усвоения ПГА.

4. При добавках углеводородных кислот природные штаммы хемолитотрофных водородокисляющих бактерий синтезируют гетерополимерные ПГА, содержащих в своем составе мономеры с короткой и средней длиной углеродной цепи.

Апробация работы. Материалы диссертации были представлены на YII, X, XI Всесоюзных совещаниях по вопросу круговорота веществ в замкнутой системе на основе жизнедеятельности низших организмов (г. Канев, 1972, 1079, 1981); на XI научно-координационном совещании по теме 1-84 (г. Ташкент, 1974); на Всесоюзном совещании по управлению биосинтезом водородных бактерий и других хемоавтотрофов (г. Красноярск, 1976); на II Всесоюзной конференции по биосинтезу и метаболизму липидов и микроорганизмов (г. Москва, 1979); на 7-ом симпозиуме по подготовке биологических проб для хроматографии (Швеция, Лунд, 1995); на 13 Международном симпозиуме по растительным липидам (Испания, Севилья, 1998); на Международном симпозиуме по биополимерам ISBP02 (Германия, Мюнстер, 2002); на 2ом Конгрессе Европейских Микробиологов (FEMS, Испания, Мадрид, 2006); на 4-ом Европейском симпозиуме по биополимерам ESBP07 (Турция, Кусадаси, 2007); на IV Съезде Российского общества биохимиков и молекулярных биологов c международным участием «Биохим-2008» (Новосибирск, 2008); на V международной конференции по новым технологиям и приложениям современных физико-химических методов для изучения окружающей среды (Ростов-на-Дону, 2009); на 14-м Европейском Конгрессе по биотехнологии (Испания, Барселона, 2009).

Работа выполнена в рамках плановой тематики НИР ИБФ СО РАН (№№ государственной регистрации: 01201000937; 0120.0404601; 01.200703092) и базовой кафедры биотехнологии Сибирского федерального университета в рамках научно-образовательного центра «Енисей» при поддержке Министерства образования РФ и Американского фонда гражданских исследований и развития (CRDF) (гранты REC 002, RUX0-002-KR-06, BG5202, BG8102); Международного научно-технического центра (МНТЦ-ISTC, проект № 2218); РФФИ (гранты №№ 05-04-08024офи-а, 07-03-00112-а, РФФИ-КФН 02-04-97701); Красноярского краевого фонда науки (ККФН) (гранты №№ 9F154C, 13G028, 15G104, 16G104); Программы Интеграционных программ Сибирского отделения РАН (проекты № 96 «Фундаментальные основы биотехнологического получения целевых продуктов и препаратов»); Программы Министерства образования и науки РФ «Развитие потенциала высшей школы» (проекты №№ 2.1.1.528; РНП-11); мега-гранта по Постановлению Правительства РФ № 220 от 9 апреля 2010 г. «Для государственной поддержки научных исследований, проводимых под руководством ведущих ученых в Российских образовательных учреждениях высшего профессионального образования»» (проект «Биотехнология новых биоматериалов», договор11G34.31.0013).

Публикации. По материалам диссертации опубликовано 70 работ, включая 60 cтатей в центральных РФ и зарубежных журналах, из них 60 статей в журналах, входящих в список ВАК.

Вклад автора: Планирование и проведение экспериментов, проведение всех химических анализов, обработка и анализ полученных результатов, подготовка публикаций.

Структура работы. Научный доклад изложен на 72 страницах машинописного текста и содержит 30 таблиц и 16 рисунков.

Похожие диссертации на Синтез полиэфиров гидроксипроизводных жирных кислот (полигидроксиалканоатов) и характеристика состава липидов сине-зеленых, светящихся и водородокисляющих прокариот