Введение к работе
Актуальность работы.
Одной из актуальных проблем Российской электроэнергетики является снижение потерь мощности и электроэнергии в единой энергетической системе. Решение этой задачи возможно путем оптимизации режима работы энергосистемы по уровням напряжения и потокам реактивной мощности. Для решения указанной задачи, необходима разработка системы измерения режимов работы сети сверхвысокого напряжения с учетом потерь мощности на корону.
Потери электроэнергии в воздушных линиях (ВЛ) электропередачи состоят из нагрузочных потерь, потерь на корону и потерь от токов утечки по изоляции, при этом определяющими являются нагрузочные потери и потери на корону, которые в разной степени зависят от уровня напряжения: нагрузочные потери при неизменном значении мощности, сопротивления, а значит и напряжения на стороне нагрузки, обратно пропорциональны квадрату напряжения линии, а потери на корону пропорциональны напряжению линии в пятой степени. Таким образом, оптимальный уровень напряжения в узлах энергосистемы зависит от соотношения потерь на корону и нагрузочных потерь ВЛ. Если в хорошую погоду нагрузочные потери преобладают над потерями на корону, то при плохой погоде (снег, дождь, изморозь) потери на корону увеличиваются на 1-2 порядка. Вот почему создание системы непрерывного измерения потерь на корону ВЛ является необходимой базой для оптимизации режима по напряжению и потокам реактивной мощности. Учет потерь на корону может дать значительный экономический эффект в свете изменившихся принципов расчета тарифов на услуги по передаче и распределению электрической энергии, а также проводимых в последние годы международных программ энергосбережения и снижения вредного воздействия на экологию производства и передачи электроэнергии.
Проблемой измерения и расчета потерь на корону занимались многие отечественные и зарубежные ученные: Пик Ф.В., Хольм Р., Майр О., Попков В.И., Александров Г.Н., Левитов В.П., Тамазов А.П., Емельянов Н.П., Тиходеев Н.Н., Сергеев Ю.Г., Костюшко В.А., и др., а также такие исследовательские центры как: ВНИИЭ, НИИПТ, ЭНИН, ОРГРЭС, МЭИ - ТУ. Работы этих ученых внесли значительный вклад в развитие теории и практики расчетов потерь мощности и электроэнергии на корону.
Развитие информационных технологий и средств автоматизации позволяет подойти к рассматриваемой проблеме с новой позиции. Для определения текущих значений потерь в проводах от тока нагрузки и на корону ВЛ с высокой точностью в ОАО «ЭНИН» разработан универсальный измерительный комплекс (УИК). Для определения потерь на корону комплекс использует данные оперативного информационного комплекса (ОИК). Данный комплекс внедрен в опытную эксплуатацию в ОАО «ФСК ЕЭС», которому будет отведена одна из самых важных задач в системе оптимизации режима по напряжению и потокам реактивной мощности единой национальной энергетической системы (ЕНЭС).
Так как данная разработка является инновационной, появилась необходимость в детальном исследовании погрешностей получаемых в УИК потерь на корону и от токов нагрузки. Числовая оценка этих погрешностей не только даст представление о точности метода, но и позволяет разработать рекомендации по совершенствованию рассматриваемого алгоритма.
Существующие в настоящее время подходы расчета потерь мощности и электроэнергии на корону не могут быть использованы для решения задач оперативного расчета и оптимизации режимов электроэнергетических систем (ЭЭС), так как отсутствует возможность определения текущего вида погоды вдоль линий электропередачи.
Уникальный в своем роде метод определения текущих потерь и их составляющих (на корону и в проводах от токов нагрузки) предложен Тамазовым А.И.. Данный алгоритм основан на использовании телеметрической информации о режимных параметрах линии, выда-
ваемой ОИК. Значения текущих потерь мощности определяются путем вычитания из входящей в линию активной мощности Р1 в её начале активной мощности Р2 в её конце, при этом компенсируется систематическая и случайная погрешность измерения потерь. Рассматриваемый алгоритм заложен в программный комплекс УИК, предназначенный для оценки активной, реактивной мощностей, напряжений и потерь в линии, что позволяет при резком увеличении потерь на корону оперативно проводить мероприятия по их снижению.
Цель работы заключается в исследовании погрешностей и совершенствовании метода определения текущих потерь мощности на корону и в проводах. Данный метод позволит оценивать текущий, среднесуточный и среднегодовой уровень потерь электроэнергии ВЛ, а также разработать технологию учета рассчитанных данным методом потерь мощности на корону в комплексах для расчетов установившихся режимов и путей их оптимизации.
Для достижения поставленной цели решались следующие задачи:
- Рассмотрение составляющих потерь электроэнергии в ЭЭС и существующие методы их расчета. Выполнение статистического анализа потерь электроэнергии в проводах ВЛ СВН, рассмотрение влияющих на их значения факторов. 
- Анализ чувствительности метода при измерении небольших значений потерь электроэнергии на корону (при повышенной влажности воздуха) и в проводах в режиме реального времени. 
- Исследование методической и инструментальной погрешностей, заложенных в программный комплекс (ПК) УИК алгоритмов определения нагрузочных потерь и потерь на корону в режиме реального времени. 
- Анализ эффекта снижения потерь электроэнергии на корону и в проводах ВЛ ЕНЭС при регулировании напряжения по данным УИК о текущих значениях потерь электроэнергии. 
- Определение максимального диапазона регулирования напряжения и возможного эффекта экономии мощности потерь на единичных ВЛ 500, 750 кВ. Определение диапазона регулирования напряжения и возможного эффекта экономии мощности потерь для сети 500 кВ объединенной энергосистемы (ОЭС) Средней Волги и части сети 750, 500 кВ объеденной энергосистемы Центра. Анализ возможности усиления эффекта экономии электроэнергии в результате замены в ОЭС Средней Волги существующих шунтирующих реакторов (ШР) на управляемые ШР. 
Методы и средства исследования. При решении поставленных задач использовались методы математического анализа, анализа погрешностей в сложных системах с большим количеством измеряемых величин, методы расчета установившихся режимов и их оптимизации с помощью ПК КОСМОС, а также методы статистической обработки данных при анализе измеренных значений потерь электроэнергии.
Достоверность результатов работы подтверждается использованием проверенных методик, уравнений и программных комплексов, связанных с теорией статистического анализа данных, расчетов погрешностей измеряемых величин, а так же расчетов установившихся процессов и их оптимизации.
Научная новизна заключается в том, что впервые получены следующие новые научные результаты:
- Показано, что при расчете нагрузочных потерь в алгоритме УИК целесообразно использовать уравнения, учитывающие волновые свойства ВЛ СВН. 
- Выявлено, что при определении нагрузочных потерь электроэнергии существенную долю погрешности составляет погрешность определения температуры провода. 
- Показана необходимость учета влияния на потери электроэнергии от коронирова-ния изменения напряжения вдоль линии для ВЛ, протяжённостью более 250 км. 
- Доказано, что погрешность определения текущих потерь на корону в плохую по- 
году, равна значению инструментальной погрешности определения потерь на корону в хорошую погоду.
- В связи с тем, что рассматриваемая методика оказалась нечувствительной к потерям мощности на корону при повышенной влажности воздуха, разработаны поправки в алгоритм ПК УИК, позволяющие интегрально учитывать потери на корону при повышенной влажности. 
- По данным, полученных с помощью УИК для отдельных ВЛ 500 и 750 кВ, а также сети 500 кВ ОЭС Средней Волги и сети 500 - 750 кВ ОЭС Центра показана эффективность регулирования напряжения для снижения потерь электроэнергии на корону и нагрузочных потерь в проводах фаз ВЛ. 
Практическая ценность и реализация результатов работы:
- Анализ погрешностей рассматриваемого метода позволил оценить степень точности алгоритмов, используемых в ПК УИК, и сделать вывод о его применимости в промышленной эксплуатации. 
- Разработаны рекомендации по доработке ПК УИК с целью повышения точности определения текущих потерь на корону в В Л СВН. В связи с чем алгоритм ПК «УИК» был соответствующим образом доработан. 
- Результаты исследования показали, что для повышения точности рассматриваемого метода необходимо введение ряда дополнительных измерений, а именно температуры провода и влажности воздуха. 
- Показана эффективность регулирования напряжения для снижения потерь электроэнергии в реальных сетях энергосистем. 
- Анализ погрешностей измерений и вводимые уточнения позволяют использовать УИК для мониторинга текущих потерь электроэнергии в В Л 330 кВ и выше, а так же для проведения оперативных расчетов установившихся режимов, что подтверждается успешным использованием данных измерений потерь электроэнергии в ПК КОСМОС. 
Основные положения, выносимые на защиту.
- Методика определения текущих потерь мощности на корону и в проводах, с учетом чувствительности потерь на корону в период повышенной влажности, распределения параметров линии в схемах замещения, а также изменения напряжения вдоль линий электропередачи, протяженностью более 250 км. 
- Формулы и графические зависимости для определения погрешностей измерения суммарных потерь в ВЛ и их структурных составляющих по разности измеряемых по концам линии потоков активной мощности. 
- Результаты исследования погрешности алгоритма определения текущих потерь мощности на корону, заложенного в ПК УИК. Разработанные рекомендации по усовершенствованию алгоритма ПК УИК с целью повышения точности расчета нагрузочных потерь в ВЛ и потерь на корону можно использовать как при проектировании, так и при эксплуатации электрических сетей. 
- Результаты исследований диапазона регулирования напряжения на одиночных ВЛ 500 и 750 кВ и эффекта экономии потерь мощности по данным УИК. 
- Результаты исследований возможной экономии потерь мощности регулированием напряжения в однородной сети 500 кВ и сети 500 - 750 кВ при различных погодных условиях вдоль трасс ВЛ, как при использовании существующих средств регулирования, так и при замене шунтирующих реакторов на управляемые шунтирующие реакторы в однородной сети 500 кВ. 
Структура и объем диссертации. Диссертация состоит из введения, четырех глав, заключения, списка литературы и приложений. Объем диссертации составляет 135 стра-


















