Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Кинетические свойства низкоразмерных материалов наноэлектроники в сильных внешних полях Завьялов, Дмитрий Викторович

Кинетические свойства низкоразмерных материалов наноэлектроники в сильных внешних полях
<
Кинетические свойства низкоразмерных материалов наноэлектроники в сильных внешних полях Кинетические свойства низкоразмерных материалов наноэлектроники в сильных внешних полях Кинетические свойства низкоразмерных материалов наноэлектроники в сильных внешних полях Кинетические свойства низкоразмерных материалов наноэлектроники в сильных внешних полях Кинетические свойства низкоразмерных материалов наноэлектроники в сильных внешних полях
>

Диссертация, - 480 руб., доставка 1-3 часа, с 10-19 (Московское время), кроме воскресенья

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Завьялов, Дмитрий Викторович. Кинетические свойства низкоразмерных материалов наноэлектроники в сильных внешних полях : диссертация ... доктора физико-математических наук : 01.04.04 / Завьялов Дмитрий Викторович; [Место защиты: Волгогр. гос. техн. ун-т].- Волгоград, 2010.- 298 с.: ил. РГБ ОД, 71 11-1/217

Введение к работе

Актуальность проблемы

Исследования физических процессов в квантовых твердотельных структурах во второй половине XX века способствовали не только открытиям фундаментального характера (таким, как, например целочисленный и дробный квантовый эффект Холла), но и стимулировали прогресс электронной инженерии. Одним из направлений работы исследователей всего мира в этой области является создание и изучение новых материалов физической электроники, которые в будущем, возможно, смогут кардинально изменить ее элементную базу. Ярким примером такого рода материалов является графен, который в лабораторных условиях был получен в 2004 году и моментально стал объектом пристального внимания физиков. Это обусловлено, в первую очередь, возможностями его технического применения в электронных устройствах благодаря его высокой проводимости, превышающей проводимость основного материала современной микроэлектроники кремния более чем на порядок. Кроме того, волновое уравнение, описывающее состояние электронов в графене, имеет вид уравнения Дирака, что означает возможность проверить некоторые положения квантовой электродинамики экспериментально, используя графен как своего рода «полигон» для испытаний.

Следует отметить, что графен не единственный за последние два-три десятилетия искусственно созданный материал с необычными электронными свойствами. К таким перспективным с точки зрения физической электроники материалам можно отнести полупроводниковые сверхрешетки (СР), углеродные нанотрубки, квантовые наноструктуры (цилиндры, проволоки, кольца, точки и т.д.). Все они обладают необычными электронными свойствами и активно изучаются во всем мире.

Вышесказанное обуславливает актуальность диссертационной работы, так как основными объектами исследования в ней были практически все перечисленные материалы. А именно, объектами изучения были:

  1. Полупроводниковая сверхрешетка, впервые синтезированная в начале

70-х годов. Практическое применение СР началось уже в 80-х годах, и сейчас мы имеем целый спектр полупроводниковых приборов на основе квантовых СР от диодов и транзисторов с рядом уникальных свойств до различных элементов лазерной техники. Столь широкий спектр применения СР обусловлен разнообразием их физических свойств. Так, например, наличие на вольтамперной характеристике СР участка с отрицательным дифференциальным сопротивлением позволяет использовать квантовую СР в качестве генератора волн субмиллиметрового диапазона. Не менее интересными, а, возможно, и более перспективными, представляются оптические свойства СР. Очень важно, что электромагнитные (ЭМ) волны, распространяющиеся в квантовой СР, становятся существенно нелинейными уже при относительно слабых полях по сравнению с обычными полупроводниковыми материалами. Одним из следствий этого является возможность существования в СР нелинейных периодических и уединенных (солитонов, бризеров) волн, которые могут быть использованы в микроэлектронике в качестве носителей информации. Кроме того, энергетический спектр СР резко анизотропен – движение электронов вдоль ее слоев является квазисвободным, а вдоль оси, наоборот, затруднено и описывается приближением сильной связи. Этот факт позволяет говорить о СР как об объекте с промежуточной размерностью. Действительно, приложение достаточно сильного поля вдоль ее оси приводит к дискретизации продольной части энергетического спектра (штарковское квантование) и СР в этом случае становится набором практически несвязанных двумерных квантовых ям.

  1. Квантовый цилиндр, квантовая нить. Успехи современных технологий синтеза материалов позволяют изготовлять объекты практически любой геометрии и варьировать ширину запрещенной зоны в них в очень широких пределах. Широко обсуждается возможность применения подобных искусственно созданных материалов в электронных приборах – баллистических интерферометрах, оптических фазовых модуляторах, интерференционных модуляторах интенсивности, мостиковых переключателях, направленных ответвителях, цифровых оптических переключателях.

  2. Графен. О перспективных свойствах графена было сказано выше, однако следует добавить, что спектр графена также непараболичен и неаддитивен, что позволяет надеяться на его применение, например, в качестве умножителя частоты. Подобная возможность, кстати, уже реализована лабораторно.

Целью работы является исследование транспортных и оптических свойств вышеперечисленных объектов в условиях воздействия сильных (не сводящихся к возмущениям) электромагнитных полей.

Научная новизна. В диссертации впервые

1. Исследована проводимость основных типов одномерных наноструктур в присутствии сильного электрического поля. Предсказано немонотонное поведение и пороговый характер вольт-амперных характеристик исследуемых систем.

2. Изучен радиоэлектрический эффект в полупроводниковой сверхрешетке в присутствии сильного электрического поля. Предсказаны эффекты смены знака тока увлечения при определенных параметрах внешних воздействий и выявлен осцилляционный характер зависимости радиоэлектрического тока от напряженностей приложенных полей.

3. Исследован ряд эффектов, связанных с распространением в полупроводниковой сверхрешетке нелинейных электромагнитных волн. В частности, предсказано изменение положения порога на зависимости коэффициента поглощения кноидальной электромагнитной волны от ее напряженности при учете примесного поглощения.

4. Предсказаны эффекты взаимного поперечного выпрямления переменных токов в графене. Установлено, что нормальное падение на графен двух взаимно поперечно поляризованных электромагнитных волн в ряде случаев может приводить к возникновению постоянной составляющей тока.

5. Обнаружено, что столкновения электромагнитных солитонов (представляющих интерес для передачи сигналов в устройствах микроэлектроники) в окрестности слоя неоднородности концентрации заряда в СР приобретает неупругий характер.

Методы исследований и достоверность результатов

Достоверность полученных результатов обеспечивается использованием в работе современных, хорошо апробированных методов компьютерного моделирования и теоретической физики, строгим соблюдением пределов применимости используемых подходов, моделей и приближений, непротиворечивостью выводов исследования основным физическим закономерностям, а также предельным переходом обобщающих результатов к ранее известным (частным) результатам. Отдельные результаты из пятой главы диссертации имеют экспериментальное подтверждение [1].

Научная и практическая ценность работы

Представленные в работе новые результаты и установленные закономерности позволяют пополнить сведения об электронных свойствах низкоразмерных материалов современной микро- и наноэлектроники, что может быть использовано в дальнейших теоретических и экспериментальных исследованиях.

Изученные и предсказанные эффекты, такие как радиоэлектрический эффект в сильном электрическом поле и взаимное поперечное оптическое выпрямление в однослойном и двухслойном графене, могут быть использованы при конструировании новых приборов микро- и наноэлектроники: сверхбыстрых оптических детекторов, интерферометров и т.д.

Кроме того, полученные результаты могут использоваться в качестве учебного материала при чтении курсов по физике твердого тела в высших учебных заведениях.

На защиту выносятся следующие положения

Предсказанные и изученные в работе явления и эффекты обладают яркими и важными с практической точки зрения особенностями.

  1. Пороговый характер имеют:

- зависимости плотности тока, текущего перпендикулярно оси СР, от напряженности продольного квантующего электрического поля;

- зависимости проводимости квантового цилиндра со сверхрешеткой в условиях штарковской лестницы от напряженности квантующего электрического поля;

- зависимости высокочастотной проводимости спиральной квантовой проволоки, находящейся в постоянном электрическом поле от частоты падающей электромагнитной волны;

- статическая вольт-амперная характеристика квантовой нити с жесткими стенками при учете ионизации примесей электромагнитной волной;

- коэффициент внутриминизонного поглощения кноидальных волн в СР с учетом процессов ионизации примесей.

  1. Резонансный характер носят:

- зависимости тока увлечения в СР в присутствии сильного электрического поля, направленного вдоль ее оси;

- зависимости поперечной магнитопроводимости СР в условиях штарковского квантования от магнитного и продольного электрического полей;

- зависимость постоянной составляющей продольной плотности тока, вызванного в СР совместным действием высокочастотных электрических полей двух ЭМ волн от напряженности поля одной из волн, которая предполагается кноидальной.

  1. Следует ожидать проявления осцилляционного характера в следующих исследованных ситуациях:

- влияние кноидальной электромагнитной волны на статическую вольт-амперную характеристику двумерной СР приводит к появлению осцилляций, которые не связаны с переходами носителей между штарковскими подуровнями;

- осцилляции продольной магнитотермоэдс одномерной полупроводниковой СР, обусловленные квантованием Ландау, модулируются осцилляциями, связанными с брэгговскими отражениями от краев минизоны проводимости.

  1. Должны проявляться следующие поперечные выпрямляющие свойства графена:

- эллиптически поляризованная электромагнитная волна, падающая нормально на поверхность графена должна вызвать появление постоянной поперечной составляющей тока в направлении перпендикулярном приложенному тянущему постоянному электрическому полю;

- при нормальном падении на графен двух электромагнитных волн разной частоты с векторами напряженности, направленными перпендикулярно друг другу в случае, когда отношение частот падающих волн равно двум должна возникнуть постоянная составляющая электрического тока.

  1. Столкновения электромагнитных солитонов в окрестности слоя с повышенной концентрацией носителей заряда в СР не являются абсолютно упругими. Пороговое значение концентрации носителей заряда для прохождения слоя взаимодействующими солитонами значительно отличается от порогового значения для одиночного прохождения солитонов.

Апробация результатов

Основные результаты докладывались на следующих научных конференциях:

– V Международная конференция “Оптика, оптоэлектроника и технологии” (Ульяновск, 2003 г.);

– X Международная конференция “Опто-, наноэлектроника, нанотехнологии и микросистемы ” (Ульяновск, 2008 г.);

– II Международная конференция по физике электронных материалов / Направление: “Квантоворазмерные и другие физические явления” / Калуга, 2005;

– III Международная конференция по физике электронных материалов / Направление: “Квантоворазмерные и другие физические явления” / Калуга, 2008;

– II, III, IV Международные семинары “Физико-математическое моделирование систем” / Направление: «Моделирование физических процессов в конденсированных средах» / Воронеж, 2005, 2007, 2009;

– X, XIII, XIV, XV, XVIII, XIX Международные совещания “Радиационная физика твердого тела” /Направление: «радиационная физика неметаллических материалов»/ Севастополь, 2003, 2004, 2004, 2006, 2008, 2009.

– Седьмая Региональная Научная Конференция «Физика: фундаментальные и прикладные исследования, образование»/ направление: «Физика конденсированного состояния» / Владивосток, 2007;

– X Конференция студентов, аспирантов и молодых ученых по физике полупроводниковых, диэлектрических и магнитных материалов (ПДММ-10) / Владивосток, 2006;

Личный вклад автора

Все результаты, изложенные в диссертации, получены автором лично при консультациях со стороны заведующего кафедрой общей физики Волгоградского государственного педагогического университета профессора Крючкова С.В. Автору принадлежит постановка задач в большинстве работ. В подавляющем большинстве совместных работ диссертантом лично проведены аналитические выкладки и написаны программы для численных расчетов. В части работ аналитические выкладки, численный анализ и обсуждение результатов проводились совместно с аспирантами кафедры общей физики Мещеряковой Н.Е., Кухарем Е.И., Каплей Е.В., Сивашовой Е.С., Марчуком Э.В., Конченковым В.И., Тюлькиной Т.А.

Структура и объем диссертации

Диссертация состоит из введения, пяти глав, заключения, списка цитируемой литературы и приложения. Общий объем составляет 298 страниц, включая 89 рисунков и графиков. Список литературы содержит 235 наименований цитируемых работ отечественных и зарубежных авторов.

Публикации

По результатам диссертационного исследования опубликовано 32 статьи, в том числе публикаций в журналах из списка ВАК для докторских диссертаций – 20 (из них 18 работ в журналах издательства РАН – “Физика твердого тела”, “Физика и техника полупроводников”, “Оптика и спектроскопия”, “Журнал технической физики”, “Письма в журнал технической физики”).

Похожие диссертации на Кинетические свойства низкоразмерных материалов наноэлектроники в сильных внешних полях