Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Математические модели термогидродинамических процессов при фазовых превращениях в природных и металлических системах Черепанова, Вера Корнилиевна

Диссертация, - 480 руб., доставка 1-3 часа, с 10-19 (Московское время), кроме воскресенья

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Черепанова, Вера Корнилиевна. Математические модели термогидродинамических процессов при фазовых превращениях в природных и металлических системах : диссертация ... доктора физико-математических наук : 01.02.05, 25.00.11 / Черепанова Вера Корнилиевна; [Место защиты: Институт теоретической и прикладной механики Сибирского отделения РАН].- Новосибирск, 2012.- 172 с.: ил. РГБ ОД, 71 13-1/176

Введение к работе

Актуальность работы. Широкий спектр явлений в природных и технологических условиях сопровождается фазовыми переходами первого рода - плавлением и затвердеванием, сублимацией и десублимацией, испарением и конденсацией. Как показал А.А. Дородницын (1966), природные процессы трудно реализовать в физическом эксперименте, поэтому математическое моделирование является единственным инструментом, позволяющим оценить меняющиеся со временем пространственные соотношения основных характеристик системы. То же самое относится к металлургии, где сопряженное протекание кристаллизации, стеклования, ликвации многокомпонентных сплавов с достаточным для практических целей приближением можно описать количественно лишь используя численные методы. Аналогичный подход является единственным и при реконструировании динамики эндогенных геологических процессов. Наиболее широко методы математического моделирования используются при изучении развития магматических систем в коре и мантии Земли, а также процессов вулканизма.

Современный подход к исследованию фазообразования при описании физико-химии природных и металлических систем основывается на идеях, заложенных в работах M. Volmer, D.R. Uhlmann, B. Chalmers, D. Turnbull, J.W. Cahn, А.Н. Колмогорова, В.Т. Борисова и др. Задача количественного анализа процессов переноса тепла в магматических и метаморфических системах имеет вековую историю, но лишь с середины прошлого века появились первые исследования процессов метаморфизма и плавления горных пород, кристаллизации магматических расплавов (Jaeger, 1959; Shimazu, 1959; Кудрявцев и др., 1967, 1969; Шарапов, 1967-1970; Ярошевский, 1965 и др.). В исследовании динамики процессов фракционирования магматических расплавов большой вклад принадлежит Д. Маршу и его научной школе. В СССР эти исследования активно развивались в ГЕОХИ РАН под руководством А.А. Ярошевского. Наиболее существенный вклад в разработку количественных моделей фракционирования базитовых расплавов внес М.Я. Френкель и его последователь А.А. Арискин. В СО РАН численные модели фракционирования в гранитоидных магмах развивались неформальной группой из геологов, химиков, физиков и математиков (В.Н. Шарапов, А.Н. Киргинцев, А.Н. Черепанов, В.П. Ильин). Разработка количественных моделей сопряженного протекания фазового разделения при кипении, ликвировании, стекловании магм и гетерофазных процессах конвективного переноса тепла и массы в магматогенных системах проводилась главным образом русскоязычными исследователями в СССР и России (В.С. Голубев, В.В. Ревердатто, А.Г. Кирдяшкин, В.Н. Шарапов и др.). В качестве фиктивных диаграмм состояния в таких моделях используются программные комплексы созданные в России (ПК КОМАГМАТ, А.А. Арискин; ПК «Селектор», И.К. Карпов, К.В. Чудненко). С точки зрения фундаментальных и прикладных аспектов петрологии изверженных пород и геологии эндогенных рудообразующих систем требуется развитие численных моделей, описывающих процессы образования магматогенных рудных месторождений. Эти исследования касаются главным образом проблем разработки теоретических основ формирования различных типов месторождений полезных ископаемых, определения геологических предпосылок формирования и развития термодинамических критериев поисковых признаков, оценки зональности конкретных рудных объектов.

Поэтому создание комплексных геолого-геохимических и физико- математических моделей, применимых для процессов структуро- и рудообразования как в природных, так и в металлических системах, является актуальной задачей, обусловившей выбор направления исследований в данной работе.

Целью работы является установление основных закономерностей процессов фазового разделения компонентов и структурообразования при затвердевании в природных магматогенных и металлических системах с помощью математического моделирования.

Задачи исследования:

  1. Определение термогидродинамических условий формирования и параметров структур при затвердевании силикатных и алюмосиликатных котектических расплавов.

  2. Разработка физико-математических моделей и определение на их основе условий формирования и морфологии эндогенных композитных структур при кристаллизации металлических и природных расплавов.

  3. Построение комплексной модели тепломассопереноса в магматогенной гидротермальной системе и анализ его влияния на формирование областей рудных отложений.

  4. Разработка физико-математической модели процесса перехода твердого вещества в газовую фазу в потоке горячего газа-носителя.

Новизна работы заключается в построении комплексных физико- математических моделей и анализе механизмов, лежащих в основе эндогенного структуро- и рудообразования:

кристаллизационного,

физико-химического (термодинамического),

флюидо-конвективного,

сублимационного.

Таким образом, материалы, изложенные в диссертации представляют собой важное научное достижение в области моделирования процессов эндогенного структуро- и фазообразования в природных и металлических системах.

Обоснованность и достоверность полученных в работе результатов следует из того, что они основаны на общих законах и уравнениях механики сплошных сред и тепломассопереноса, обеспечиваются строгими математическими выводами, выбором корректных численных методов, качественным и количественным совпадением модельных результатов с экспериментальными данными и результатами других авторов.

Научно-практическая значимость.

Предложенная физико-математическая модель затвердевания силикатных и алюмо-силикатных расплавов позволяет определить пороговые значения скорости охлаждения, рассчитать основную характеристику стеклокристаллической структуры - долю стекловатой фазы - в зависимости от динамики параметров охлаждения. Проведенный анализ влияния естественной конвекции у вертикального фронта кристаллизации на дифференциацию силикатного расплава позволяет оценить размер областей тепловой и химической неоднородностей и показать область реализации этого фактора разделения в разноглубинных магматических системах.

На основе математической модели процесса направленного затвердевания в металлических бинарных расслаивающихся системах получен критерий, определяющий вид дисперсной структуры, предложен метод расчета разделения компонентов между жидкими фракциями. С помощью модели динамики сопряженного перемещения фазовых фронтов в ретроградно кипящих и ликвирующих природных расплавах установлена количественная зависимость фазового состава включений от характера смачивания поверхности твердой фазы, а также соотношения плотностей ликвирующих жидкостей и исходного водосодержания расплава, что является ключевым фактором рудообразования в расслоенных интрузивах. Определены условия развития ритмического режима кристаллизации при направленном затвердевании магматических расплавов, которое не осложнено усадочной конвекцией, оценены условия нарушающие развитие ритмической кристаллизации при затвердевании силикатных и рудных жидкостей, охлаждающихся в плоских магматических камерах.

Построена комплексная модель тепломассообмена в ортомагматической флюидной системе с учетом развития всех фазовых границ в потоках гидротермальных магматических флюидов, на основе которой показаны условия образования устойчивых зон пародоминирования в вулканических зонах с различными граничными условиями их разгрузки. Использование при численном моделировании программного комплекса «Селектор» в модификации проточного резервуара в качестве фиктивной диаграммы состояния позволяет описывать развитие и параметры минералогической зональности главных типов вулканогенных полиметаллических и золото- серебряных месторождений. Это позволяет существенно улучшить достоверность прогноза скрытого оруденения.

Разработанная физико-математическая модель процесса перехода твердого вещества в газовую фазу в потоке горячего газа-носителя применима для количественного описания процесса сублимации металлоорганических соединений, применяемых в CVD-технологии, и отложений минералов в трещинах горных пород. Предложенный подход дает возможность исследовать влияние характеристик газового потока на динамику сублимации, оценить масштабы эндогенного рудообразования. Применительно к металлоорганическим соединениям полученные результаты могут быть использованы как управляющие параметры процесса, в том числе и при многокомпонентной сублимации.

Основные положения, представленные к защите:

Физико-математическая модель динамики затвердевания силикатных расплавов с учетом изменения состава и вязкости межкристаллитной жидкости, результаты численного исследования влияния параметров охлаждения на процесс стеклования. Анализ влияния естественной конвекции у вертикального фронта кристаллизации на дифференциацию силикатного расплава.

Математическая модель процесса направленного затвердевания в металлических бинарных расслаивающихся системах, на основе которой получен критерий, определяющий морфологию структур, и метод расчета их дисперсности. Модель динамики сопряженного перемещения фазовых фронтов в ликвирующих магматических расплавах, с помощью которой определен состав, количество и размеры газовых и рудных включений в минералах и кумулусе в зависимости от параметров системы. Результаты численного моделирования ритмического режима кристаллизации, на основе которых определены условия его развития и дано количественное описание полосчатой неоднородности при направленном затвердевании котектического расплава в интрузивной камере.

Замкнутая модель тепломассообмена в ортомагматической флюидной системе, на основе которой проведен анализ динамики фазовых границ в гидротермальном потоке магматического флюида в проницаемых зона простой и перменной геометрии с учетом граничных условий его разгрузки.

Нестационарная модель сублимации минералов и металлоорганических соединений в потоке инертного газа. Результаты численного исследования влияние температуры и скорости газового потока на динамику процесса и масштабы эндогенного рудообразования, обусловленного сублимационным механизмом.

Личный вклад автора в работы, выполненные в соавторстве и включенные в диссертацию, состоял в постановке задач, написании компьютерных программ, проведении численных экспериментов, анализе и интерпретации полученных данных, написании статей и глав коллективных монографий.

Апробация работы. Результаты работы докладывались на V Международной конференции молодых ученых «Актуальные вопросы теплофизики и физической гидрогазодинамики» (Новосибирск, 1998), II Международной конференции «Материалы Сибири» (Барнаул, 1998), Всероссийской научно-практической конференции «Металлургия на пороге XXI века» (Новокузнецк, 1999, 2000), VII Всероссийской конференции молодых ученых «Актуальные вопросы теплофизики и физической гидрогазодинамики» (Новосибирск, 2002), Международной конференции по вычислительной математике (Новосибирск, 2002), Международном симпозиуме по CVD (Париж, 2003), Всероссийской научной конференции «Проблемы геохимии эндогенных процессов и окружающей среды» (Иркутск, 2007), V Международной научно-практической конференции «Исследование, разработка и применение высоких технологий в промышленности» (С.-Петербург, 2008), Международной конференции по методам аэрофизических исследований (Новосибирск, 2008), Международной школе-семинаре «Многоуровневые подходы в физической мезомеханике» (Томск, 2008), IV Всероссийском симпозиуме по вулканологии и палеовулканологии (Петропавловск- Камчатский, 2009), VIII Международной научно-практической конференции «Исследование, разработка и применение высоких технологий в промышленности» (С.-Петербург, 2009), Международной конференции «Лаврентьевские чтения по математике, механике и физике» (Новосибирск, 2010), 3-й Всероссийской научно-практической конференции «Моделирование, программное обеспечение и наукоемкие технологии в металлургии» (Новокузнецк, 2011).

Публикации. По результатам диссертации опубликовано 40 работ, из них 19 научных статей в рецензируемых журналах, 1 статья в электронном журнале, 1 препринт, главы в 3 монографиях, 16 материалов докладов на всероссийских и международных конференциях.

Работа выполнена в рамках грантов РФФИ 98-05-64005, 03-05-64324, 04-05-64107, 06-01-00080, 07-05-00910, Министерства образования и науки РНП 2.1.1.702, Федеральной целевой программы «Научные и научно-педагогические кадры инновационной России» на 2009-2013 годы.

Структура и объем диссертации. Диссертационная работа состоит из введения, пяти глав, заключения и списка цитируемой литературы. Материал изложен на 172 страницах, включает 98 рисунков. Список используемой литературы содержит 225 наименований.

Похожие диссертации на Математические модели термогидродинамических процессов при фазовых превращениях в природных и металлических системах