Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Микро- наноструктуры и гидродинамические неустойчивости, индуцированные лазерным излучением на поверхности твердых тел, и их диагностика методами лазерной и зондовой микроскопии Прокошев Валерий Григорьевич

Микро- наноструктуры и гидродинамические неустойчивости, индуцированные лазерным излучением на поверхности твердых тел, и их диагностика методами лазерной и зондовой микроскопии
<
Микро- наноструктуры и гидродинамические неустойчивости, индуцированные лазерным излучением на поверхности твердых тел, и их диагностика методами лазерной и зондовой микроскопии Микро- наноструктуры и гидродинамические неустойчивости, индуцированные лазерным излучением на поверхности твердых тел, и их диагностика методами лазерной и зондовой микроскопии Микро- наноструктуры и гидродинамические неустойчивости, индуцированные лазерным излучением на поверхности твердых тел, и их диагностика методами лазерной и зондовой микроскопии Микро- наноструктуры и гидродинамические неустойчивости, индуцированные лазерным излучением на поверхности твердых тел, и их диагностика методами лазерной и зондовой микроскопии Микро- наноструктуры и гидродинамические неустойчивости, индуцированные лазерным излучением на поверхности твердых тел, и их диагностика методами лазерной и зондовой микроскопии Микро- наноструктуры и гидродинамические неустойчивости, индуцированные лазерным излучением на поверхности твердых тел, и их диагностика методами лазерной и зондовой микроскопии Микро- наноструктуры и гидродинамические неустойчивости, индуцированные лазерным излучением на поверхности твердых тел, и их диагностика методами лазерной и зондовой микроскопии Микро- наноструктуры и гидродинамические неустойчивости, индуцированные лазерным излучением на поверхности твердых тел, и их диагностика методами лазерной и зондовой микроскопии Микро- наноструктуры и гидродинамические неустойчивости, индуцированные лазерным излучением на поверхности твердых тел, и их диагностика методами лазерной и зондовой микроскопии Микро- наноструктуры и гидродинамические неустойчивости, индуцированные лазерным излучением на поверхности твердых тел, и их диагностика методами лазерной и зондовой микроскопии Микро- наноструктуры и гидродинамические неустойчивости, индуцированные лазерным излучением на поверхности твердых тел, и их диагностика методами лазерной и зондовой микроскопии Микро- наноструктуры и гидродинамические неустойчивости, индуцированные лазерным излучением на поверхности твердых тел, и их диагностика методами лазерной и зондовой микроскопии
>

Диссертация - 480 руб., доставка 10 минут, круглосуточно, без выходных и праздников

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Прокошев Валерий Григорьевич. Микро- наноструктуры и гидродинамические неустойчивости, индуцированные лазерным излучением на поверхности твердых тел, и их диагностика методами лазерной и зондовой микроскопии : диссертация ... доктора физико-математических наук : 01.04.21 / Прокошев Валерий Григорьевич; [Место защиты: Институт лазерной физики Сибирского отделения РАН].- Новосибирск, 2009.- 245 с.: ил.

Содержание к диссертации

Введение

Глава I. Основные методы лазерной диагностики и лазерные методы формирования микроструктур .

1.1. Методы диагностики лазерноиндуцированных процессов 39

1.2. Лазерная диагностика при помощи усилителя яркости оптических изображений 46

1.3. Экспериментальная установка и методика измерений 48

1.4. Формирование изображения в лазерном проекционном микроскопе 60

1.4.1. Дифракционная задача и формирование поля на входе лазерного усилителя 61

1.4.2. Образование изображения в лазерном мониторе 66

1.4.3. Формирование изображения в лазерном усилителе яркости 71

1.5. Формирование микроструктур при лазерной термохимической модификации поверхности 74

1.6. Визуализация процесса сварки оптических волокон при помощи лазерного монитора 82

1.7. Гидродинамика формирования микроструктур при лазерном воздействии на вещество 87

1.7.1. Гидродинамические процессы в ванне расплава 88

1.7.2. Математическая модель термокапиллярной конвекции 90

1.7.3. Математическое моделирование динамических процессов при образовании структур и неустойчивостей на поверхности вещества 96

1.7.4. Экспериментальные результаты 101

Выводы к главе 1 110

Глава II. Лазерное воздействие на поверхность графита и диагностика в реальном масштабе времени плавления при атмосферном давлении .

2.1. Методика экспериментальных исследований воздействия квазипериодического лазерного излучения на поверхность графита 111

2.2. Экспериментальные результаты и их обсуждение 112

2.3. Методика восстановления трехмерного рельефа поверхности по ее двумерным изображениям 119

2.4. Плавление углерода, нагреваемого сконцентрированным лазерным излучением в воздухе при атмосферном давлении и температуре, не превышающей 4000 К 132

2.5. Исследование поверхности образцов после лазерного воздействия 137

2.5.1. Исследование нагреваемой поверхности графита с помощью лазерного монитора и оптического микроскопа 141

Выводы к главе II 149

Глава III. Формирование субмикронных и наноструктур на поверхности углеродо-содержащих материалов под действием лазерного излучения .

3.1. Наночастицы, нанокластеры и наноструктуры. Методы их получения в поле лазерного излучения 150

3.1.1. Классификация 151

3.1.2. Аллотропные формы углерода. Углеродные нанот- рубки 151

3.1.3. Получение нанотрубок и наноструктур 156

3.2. Описание экспериментальной методики 163

3.3. Объект исследования. Параметры лазерного воздействия 170

3.4. Образование микро- и наноструктур на поверхности стеклоуглерода при лазерном воздействии 170

3.5. Особенности поверхности углеродосодержащих материалов после кристаллизации, возмущенной лазерным импульсно периодическим излучением 191

Выводы к главе III 199

Глава IV. Формирование углеродных субмикронных и наноструктур на поверхности холодной подложки при воздействии лазерного излучения на поверхность углеродосодержащих материалов в атмосферном воздухе .

4.1. Лазерная абляция. Тепловая и гидродинамическая модели (краткий обзор) 201

4.2. Экспериментальная методика 208

4.3. Наблюдение процесса лазерной абляции и осаждения частиц на подложку в реальном масштабе времени при помощи лазерного монитора 212

4.4. Исследование области осаждения аблированных частиц на подложке при помощи сканирующего зондового микроскопа 215

4.5. Формирование субмикронных и наноструктур в слоистой системе подложка из кварцевого стекла - металл 220

4.6. Результаты экспериментов 224

4.7. Формирование наноструктур на поверхности холодной подложки при воздействии импульсно-периодического излучения с наносекундной длительностью импульсов 225 4.8. Экспериментальное сопоставление процессов лазерной абляции твердых мишеней в воде и воздухе при пикосе- кундной длительности импульсов 230

4.9. Способ осаждения частиц из плазменного эрозионного факела управляемым геометрическим макрораспределением... 233

4.10. Формирование наноструктур на поверхности холодной подложки при воздействии непрерывного лазерного излучения и изучение их характеристик 235

Выводы к главе IV 239

Глава V. Нелинейная динамика поверхностных колебаний жидкости, возбуждаемых лазерным излучением. фрактальные свойства поверхности . 240

5.1. Пространственные характеристики оптического изображения области лазерного воздействия на поверхность вещества 245

5.2. Распределение энергии по пространственным частотам для гидродинамического процесса в области лазерного воздействия 250

5.3. Количественные характеристики оптических изображений области лазерного воздействия 252

5.4. Формирование волновых структур на поверхности расплава при импульсно-периодичном лазерном воздействии 260 5.5. Нелинейная динамика поверхностных колебаний жидкости, возбуждаемых лазерным излучением. Фазовые портреты колебаний 262

5.6. Временные характеристики гидродинамических неустой- чивостей, индуцированных мощным лазерным излучением. Восстановление фазового портрета 266

Выводы к главе V 282

Общие выводы: 283

Список литературы 286

Введение к работе

Актуальность темы

Для лазерной физики и современных лазерных и лазерно- информационных технологий значительный интерес представляет исследование высокотемпературных процессов в области лазерного воздействия на поверхность различных материалов, приводящих к возбуждению пространственно-временных неустойчивостей и образованию микро- и наноструктур на поверхности твердого тела. Развитие таких процессов во времени определяется фундаментальными физическими явлениями, диагностика которых в реальном масштабе времени позволяет расширять область их практических приложений. Несмотря на длительную историю проводимых исследований по данному направлению, начатых практически со времени создания лазеров, проблема модификации заданным образом физико- химических свойств материалов под воздействием лазерного излучения остается приоритетной и на сегодняшний день и требует специальных экспериментальных условий по наблюдению и управлению в реальном масштабе времени развитием лазерно-индуцированных процессов. Особое значение при этом имеет получение новых наноструктурированных материалов при образовании поверхностных микро- и наноструктур. Одним из методов возбуждения таких структур является наноструктуризация поверхности при остывании образца после лазерного нагрева и плавления поверхности материала, а также лазерная абляция вещества образца с его осаждением на поверхности подложки, располагаемой непосредственно над облучаемым образцом. Дальнейшее развитие данных методов связано с возможностью управления параметрами образующихся по таким механизмам микро- и наноструктур в поле лазерного излучения. Принципиально, что с помощью исследуемых гидродинамических нелинейных процессов создаются пространственно протяженные поверхностные области с изменяемой топологией наноструктур в зависимости от конкретных уело- вий лазерного эксперимента. Получение таких новых наноструктуриро- ванных материалов с требуемыми поверхностными характеристиками представляет актуальную задачу современного материаловедения и нано- технологий, в которых методы лазерной физики могут играть доминирующую роль.

Динамика развивающихся нелинейных волновых процессов в области лазерного плавления поверхности твердого тела может быть исследована разными методами. Например, определение скорости движения потока расплава - с помощью доплеровской анемометрии, измерение периода испарительно-капиллярных волн — по колебаниям интенсивности эрозионного факела и т.п. Однако, проведение диагностики высокотемпературных процессов, сопровождающихся лазерным расплавом вещества на поверхности исследуемого образца, непосредственно во время лазерного воздействия в самой области взаимодействия затруднена из-за присутствия экранирующего свечения эрозионного факела, возникающего над облучаемой поверхностью, и собственного излучения нагретой до высокой температуры поверхности материала. Это препятствует применению для исследования зоны взаимодействия в реальном масштабе времени прямых и высокоинформативных методов распознавания нелинейных оптических образов с помощью скоростных методов регистрации видеоизображений, которые представляют наибольший интерес в аспекте изучения физических механизмов, ответственных за лазерно-возбуждаемые гидродинамические процессы и неустойчивости при поверхностном плавлении твердых тел, а также для разработки методов прямого управления развитием нелинейных волновых процессов и явлений непосредственно во время лазерного воздействия.

В данной работе впервые эти вопросы рассмотрены в едином комплексе и проведено детальное изучение процессов формирования микро- и наноструктур на поверхности твердого тела под действием лазерного излучения в условиях расплава вещества на основе оригинальных методов лазерной диагностики и распознавания образцов при развитии динамических нелинейных явлений в реальном масштабе времени.

Целью диссертационной работы являлось решение крупной научной проблемы - установление закономерностей направленного формирования микро- и наноструктур на поверхности твердых тел в результате их расплава в лазерном поле в условиях возбуждения лазерно- индуцированных гидродинамических и термохимических процессов, ответственных за развитие пространственно-временных неустойчивостей и за последующее образование микро- и наноструктур с управляемой топологией на поверхности различных веществ.

Для достижения данной общей цели были решены следующие конкретные задачи:

  1. разработаны оригинальные экспериментальные методы регистрации и распознавания нелинейных оптических изображений, которые позволили проводить исследования лазерно-индуцированных нелинейных процессов и неустойчивостей на поверхности твердых тел в реальном масштабе времени в условиях недоступных для стандартных методов измерений из-за экранировки изучаемой поверхности излучением плазменного факела, возникающего непосредственно над облучаемой поверхностью;

  1. создана математическая модель формирования оптического изображения в лазерном усилителе яркости, используемого для визуализации в реальном масштабе времени процессов модификации поверхности образца при воздействии лазерного излучения;

  2. изучены нестационарные лазерные термохимические процессы на поверхности различных сред в области лазерного воздействия и определены их характеристические параметры;

  3. исследованы пространственно-временные гидродинамические неустойчивости, индуцированные лазерным излучением на поверхности различных веществ в условиях их лазерного плавления;

  4. разработана математическая модель многовихревой термокапиллярной конвекции на поверхности твердых тел, индуцированной лазерным излучением в ванне расплава;

  5. предложены новые методы реконструкции трехмерных структур, образующихся в процессе лазерного воздействия на поверхность твердых тел, на основе двумерных динамических оптических изображений, полученных с помощью лазерного усилителя яркости;

  6. впервые надежно зарегистрировано плавление графита в лазерном поле при атмосферном давлении, обнаружено вытекание жидкого углерода из ванны расплава и изучены характерные особенности процесса плавления;

  7. исследованы процессы наноструктуризации поверхности углеро- досодержащих материалов в поле лазерного излучения и определены условия направленного формирования микро- и наноструктур из жидкой фазы графита;

  8. изучены процессы лазерной абляции с поверхности образцов стеклоуглерода и графита и разработаны методы лазерного напыления пространственно протяженных наноструктурированных объектов на поверхность подложки, располагаемой непосредственно над облучаемым образцом.

Объектами исследования в настоящей работе являлись материалы, представляющие интерес для современных лазерных и лазерно- информационных технологий - металлы (медь, титан, сталь, вольфрам, молибден, золото) и их сплавы, углеродосодержащие материалы (графит разных модификаций, стеклоуглерод), слоистые структуры (хромированные покрытия различных металлов), а также диэлектрические материалы, включая оптические волокна. Отдельные эксперименты были поставлены на биологических тканях. Весь комплекс проведенных исследований с различными объектами показал универсальность разработанных оригинальных экспериментальных подходов.

Достоверность и обоснованность полученных результатов определяется проведением комплексных экспериментальных исследований ла- зерно- индуцированных пространственно- временных неустойчивостей и поверхностных структур при лазерном нагреве и плавлении твердых тел методами оптического лазерного зондирования и измерений микро- нано- параметров изучаемых объектов с помощью сканирующей зондовой и электронной микроскопии. Результаты данных экспериментов сопоставлены с выводами выполненных теоретических исследований, с использованием математического моделирования и подходов нелинейной динамики для распознавания оптических изображений в условиях развития нелинейных волновых процессов и неустойчивостей, индуцированных лазерным излучением в конденсированной среде.

Используемые экспериментальные методики и теоретические подходы:

поверхности исследуемых твердотельных образцов из различных материалов шлифовались и производилась их оптическая полировка; в отдельных случаях наносились покрытия на поверхность образцов методом вакуумного напыления и химического осаждения;

эксперименты выполнялись с использованием современных авто- матизированных лазерных комплексов, работающих в импульсно- периодическом и непрерывном режимах; исследование динамических нелинейных процессов в области воздействия мощного оптического излучения неодимового лазера (излучение накачки) на материалы проводилось в реальном масштабе времени при помощи оригинальной экспериментальной методики с использованием лазерного усилителя яркости (лазер на парах меди) с компьютерной обработкой оптических изображений, регистрируемых скоростной цифровой камерой; изучение морфологии получаемых поверхностных наноструктур осуществлялось при помощи сканирующей электронной и зондовой микроскопии; для изучения скорости ла- зерно-индуцированных гидродинамических течений применялся допле- ровский анализатор;

- для теоретического описания термохимических и гидродинамических процессов и неустойчивостей, возбуждаемых лазерным излучением в конденсированной среде, применялись методы математического моделирования на основе уравнений нелинейной динамики и численного моделирования; пространственные характеристики возбуждаемых лазерным излучением поверхностных структур, которые регистрировались в виде динамических оптических изображений, моделировались на основе подходов фрактальной геометрии.

Научная новизна работы заключается в получении приоритетных результатов как в фундаментальном, так и в прикладном аспектах при взаимодействии лазерного излучения с поверхностью различных твердых тел в условиях формирования поверхностных микро- и наноструктур при лазерном нагреве и расплаве вещества образцов, а также в разработке физических моделей для описания наблюдаемых нелинейных волновых процессов и неустойчивостей, индуцированных лазерным излучением на поверхности твердых тел. Эти результаты работы могут быть сформулированы следующим образом.

Разработан оригинальный экспериментальный метод визуализации в реальном масштабе времени области лазерного воздействия на поверхность твердого тела, недоступной при стандартных методах измерения из-за экранирования области взаимодействия плазменным факелом, возникающим непосредственно над поверхностью облучаемого материала, с использованием лазерного усилителя яркости с компьютерной обработкой получаемых оптических динамических изображений.

На основе данного метода впервые обнаружена жидкая фаза графита, образующаяся при его плавлении при внешнем атмосферном давлении 1 атм. и температуре около 4000 К. Процесс образования жидкого углерода при плавлении графита в поле сфокусированного лазерного пучка регистрировался в реальном масштабе времени с фиксацией всех этапов развития пространственно-временных неустойчивостей и нелинейных волновых процессов в расплаве.

Впервые экспериментально получены и исследованы методами зондовой и электронной микроскопии микро- и наноструктуры, образующиеся при лазерном воздействии на поверхность стеклоуглерода. Показано, что наноструктуризация поверхности происходит как в условиях кристаллизации жидкой фазы углерода внутри ванны расплава, так и из-за осаждения паров вещества на холодную поверхность за ее пределами. Обнаружены несколько типов пространственных наноструктур с управляемой топологией - нанопики, микропоры, квазидомены — в зависимости от выбираемых параметров лазерного пучка и условий эксперимента.

Зарегистрировано новое явление — образование упорядоченных субмикронных структур и наноструктур при воздействии мощного лазерного излучения на слоистую систему: прозрачная среда (стекло), тонкий воздушный слой, поглощающая среда (графит). При использовании микро- и наноструктурированного графита в такой системе в результате процесса лазерной абляции эти микро- наноструктуры переносятся (копируются) на поверхность прозрачной среды. Для данной схемы лазерной фотолитографии определены оптимальные геометрические параметры слоистой системы и критические режимы осаждения, приводящие к образованию упорядоченных структур управляемым образом.

Предложен новый способ изучения пространственно-временных характеристик лазерно-индуцированных термохимических процессов на поверхности твердых тел (металлы, сплавы, тонкие пленки и др.) с помощью диагностики области лазерного воздействия в реальном масштабе времени с использованием лазерного проекционного микроскопа с усилителем яркости. Получены пространственные распределения во времени толщины слоя компактного окисла в процессе лазерного воздействия. Показано, что экспериментальные результаты для реально изучаемых поверхностей материалов могут значительно отличаться от ожидаемых теоретических зависимостей, рассчитанных для идеализированных поверхностей. Впервые зарегистрированы в реальном масштабе времени оптические изображения гидродинамических пространственно- временных неустойчивостей и нелинейных волновых процессов, индуцированных лазерным излучением на поверхности различных материалов, и выявлены условия возбуждения и разрушения поверхностных волновых структур при обратном действии паров отдачи, возникающих при лазерном испарении/абляции вещества и приводящих к экранировке излучением возникающего плазменного факела наблюдаемой области лазерного воздействия. Предложен новый способ контроля качества сварки оптических волокон, основанный на визуализации непосредственно в процессе сварки сварного соединения с помощью лазерного усилителя яркости.

Впервые на основе подходов нелинейной динамики классифицированы в численных показателях получаемые динамические оптические изображения области лазерного воздействия на вещество в условиях реализации различных режимов/ последовательных стадий лазерно- индуцированных нелинейных процессов и неустойчивостей на поверхности образцов - ламинарное течение, турбулентные потоки, сублимация вещества с поверхности расплава. В условиях выплеска расплава вещества измерен спектр пространственных частот динамического процесса, определяемый характерными размерами поверхностных возмущений течения жидкости и плотностью мощности излучения лазерной накачки.

С использованием подходов фрактальной геометрии и теории информации впервые получены характерные численные параметры, определяющие степень хаотизации процесса лазерного плавления вещества на основе обработки регистрируемых динамических оптических изображений области лазерного воздействия. Показана связь этих параметров с состоянием поверхности и определена их зависимость от различных режимов возбуждения гидродинамических неустойчивостей в ванне расплава. Обнаружен хаотический характер низкочастотных гидродинамических колебаний, индуцированных лазерным излучением при плавлении вещества, и показано, что в спектре этих колебаний проявляется механизм субгармонического каскада удвоения периода колебаний.

Практическая значимость исследований. Полученные в диссертации результаты представляют практический интерес для разработки новых физических принципов получения материалов с управляемыми физико- химическими свойствами, определяемыми свойствами поверхности образца, на которой возбуждаются микро- и наноструктуры в поле лазерного излучения. На основе проведенных исследований могут быть созданы новые лазерные и лазерно-информационные технологии с управлением в реальном масштабе времени процессом лазерной обработки материалов. Практическая значимость полученных результатов подтверждена шестью патентами (приведены в конце списка опубликованных работ по теме диссертации).

Выполненные исследования поддержаны грантами Российского фонда фундаментальных исследований, федеральными целевыми программами Министерства образования и науки РФ, федерального Агентства по образованию.

Научные положения и научные результаты, выносимые на защиту:

1. Оригинальный автоматизированный лазерно-информационный комплекс, включающий в себя мощный лазер накачки, зондирующий канал и канал регистрации, позволяющий осуществлять визуализацию в реальном масштабе времени области лазерного воздействия на поверхность твердого тела, недоступной при стандартных методах измерения из-за ее экранировки плазменным факелом, возникающим непосредственно над поверхностью облучаемого материала, с использованием лазерного усилителя яркости с автоматизированной компьютерной регистрацией и обработкой получаемых оптических динамических изображений поверхности образца.

Прямая регистрация в реальном масштабе времени жидкой фазы графита, образующейся при его лазерном плавлении при внешнем атмосферном давлении 1 атм. и температуре около 4000 К, с фиксацией всех этапов развития пространственно-временных неустойчивостей и нелинейных волновых процессов во время процесса образования жидкого углерода в расплаве.

Методика получения микро- и наноструктур при лазерном воздействии на поверхность стеклоуглерода в условиях его плавления и измерение их характеристик методами зондовой и электронной микроскопии; выяснение механизмов наноструктуризации поверхности, которая происходит как в условиях кристаллизации жидкой фазы углерода внутри ванны расплава, так и из-за осаждения паров вещества на холодную поверхность за ее пределами, и обнаружение нескольких типов пространственных наноструктур с управляемой топологией —нанопиков, микропор, квазидоменов — в зависимости от выбираемых параметров лазерного пучка и условий эксперимента.

Новое явление образования упорядоченных субмикронных структур и наноструктур при воздействии мощного лазерного излучения на слоистую систему в схеме лазерной фотолитографии - прозрачная среда (стекло), тонкий воздушный слой, поглощающая среда (графит), — которые в результате процесса лазерной абляции с поверхности микро- и нанострукту- рированного графита в такой системе переносятся (копируются) на поверхность прозрачной среды; определение оптимальных геометрических параметров слоистой системы и критических режимов осаждения вещества для управляемого получения поверхностных структур с заданной топологией.

Новые методы измерения пространственно-временных характеристик лазерно-индуцированных термохимических и гидродинамических процессов на поверхности твердых тел (металлы, сплавы, тонкие пленки и др.) на основе диагностики области лазерного воздействия в реальном масштабе времени с использованием лазерного проекционного микроскопа с усилителем яркости, позволяющие получать пространственные распределения во времени толщины слоя компактного окисла в процессе лазерного воздействия, осуществлять регистрацию в реальном масштабе времени динамической картины гидродинамических пространственно-временных неустойчивостей и нелинейных волновых процессов, индуцированных лазерным излучением на поверхности различных материалов, и выявлять условия возбуждения и разрушения поверхностных волновых структур в условиях обратного действия паров отдачи, возникающих при лазерном испарении/абляции вещества, а также новый способ контроля качества сварки оптических волокон, основанный на визуализации непосредственно в процессе сварки сварного соединения с помощью лазерного усилителя яркости.

Классификация в численных показателях на основе подходов нелинейной динамики получаемых динамических оптических изображений области лазерного воздействия на вещество в условиях реализации различных режимов/ последовательных стадий лазерно-индуцированных нелинейных процессов и неустойчивостей на поверхности образцов - ламинарного течения, турбулентных потоков, сублимации вещества с поверхности расплава — и измерение в условиях выплеска расплава вещества спектра пространственных частот динамического процесса, определяемого характерными размерами поверхностных возмущений течения и плотностью мощности лазерного излучения накачки.

Использование подходов фрактальной геометрии и теории информации для получения характерных численных параметров, определяющих степень хаотизации процесса лазерного плавления вещества на основе обработки регистрируемых динамических оптических изображений области лазерного воздействия, и определение связи этих параметров с состоянием поверхности образца в зависимости от различных режимов возбуждения гидродинамических процессов в ванне расплава; обнаружение хаотического характера низкочастотных гидродинамических колебаний, индуцированных лазерным излучением при плавлении вещества, в условиях проявления механизма субгармонического каскада удвоения периода колебаний.

Личный вклад автора в проведенное исследование

Все результаты, представленные в диссертационной работе, получены автором лично или в соавторстве при непосредственном его участии, либо под его непосредственным руководством.

Апробация работы проведена в ходе выступлений на российских и международных конференциях и симпозиумах, в том числе: International Conference on Industrial Lasers and Laser Applications'95,98 SPIE'95,98 (Shatura, Russia, 1995,1998), VIII International Conference Laser Application Engineering LAE-8 (St.Petersburg, 1996), II International Symposium on Modern Problems of Laser Physics (Akademgorodok, Novosibirsk, Russia, 1997, 2004, 2008), XVI International Conference on Coherent and Nonlinear Optics ICONO'98 (Moscow, 1998), международная конференция «Лазерные техно- логии-98» ILLA-98 (Шатура, Россия, 1998), ILLA-2003 (Смолян, Болгария, 2003), международная конференция LANE'1997, 2001, 2007 (Erlangen, Germany, 1997, 2001, 2007), VII международная конференция «Лазерные и лазерно-информационные технологии: фундаментальные проблемы и приложения» (Владимир-Суздаль, Россия, 2001), II российско-французский лазерный симпозиум «Современные направления в лазерной физике: спектроскопия, квантовые эффекты и атомная оптика, оптические изображения и информация» (Владимир-Суздаль, Россия, 2001), международная конференция LAT-2002, 2005 (Москва, 2002, Санкт - Петербург, 2005), International Conference Laser 0ptics-03 (St.Petersburg, 2003), International Conference on High Power Laser Beams HPLB-2006 (Nizhny Novgorod, 2006), International Conference «Advanced Laser Technologies» ALT'06 (Braov, Romania, 2006), International Conference ICONO/LAT (Minsk, 2007), German-Russian Laser Symposium 2006, 2008 (Nizhniy Novgorod 2006, Luebeck, Rostok and Hamburg, 12-18 April, 2008).

Публикации результатов работы. Материалы диссертации опубликованы в 43 научных статьях, в том числе 25 статей в журналах, из перечня рекомендованных Высшей аттестационной комиссией Министерства образования и науки РФ для публикации научных результатов диссертаций; по результатам исследований получено 6 патентов на изобретения. Всего по результатам диссертации опубликовано более 100 работ в различных научных изданиях.

Структура и объем работы. Диссертация состоит из введения, 5 глав, заключения и списка литературы. Общий объем диссертации составляет 310 страниц, 98 рисунков и 6 таблиц. Список использованных источников содержит 285 наименований.

Краткое содержание работы

Во введении обоснована актуальность темы диссертации, сформулированы цели и конкретные задачи исследования, показана научная новизна и практическая значимость полученных результатов, изложены основные положения работы, выносимые на защиту, приведен краткий обзор литературы по исследуемой проблеме.

Первая глава диссертации посвящена изучению основных методов лазерной диагностики и лазерным методам формирования микро- и наноструктур. На основании анализа литературных данных и оригинальных результатов предложены оптические схемы регистрации процессов, которые происходят в области лазерного воздействия. В качестве основного метода регистрации таких процессов предлагается схема так называемого лазерного монитора. Лазерный монитор представляет собой лазерный усилитель яркости, сопряженный с системой компьютерной регистрации и обработки оптических изображений. Для целей данной работы на основе лазерного монитора создан проекционный микроскоп.

Возможности лазерных проекционных микроскопов для визуализации высокотемпературных процессов продемонстрированы в работе [1]. Наибольшие перспективы в применении такого рода оптических схем связаны с быстрым прогрессом методов скоростной съемки и методов компьютерной обработки оптических изображений.

Преимущества разработанной экспериментальной установки при исследовании высокотемпературных процессов, протекающих при взаимодействии лазерного излучения с материалами в условиях образования паразитной засветки от эрозионного факела, экранирующего область воздействия, наглядно проявились при проведении сравнительного эксперимента. При интенсивности излучения силового лазера порядка 4-105 Вт/см2 эрозионный факел развивается настолько, что его свечение полностью экранирует область взаимодействия лазерного излучения с поверхностью материала, не позволяя производить ее наблюдение. На изображение области взаимодействия, полученное в канале с усилителем яркости, это не оказывает влияние, а изображение, полученное в канале без усиления, становится непригодным для исследования процессов, протекающих на поверхности.

При формировании изображения в лазерном усилителе яркости следует различать два случая - линейного и нелинейного режима работы лазерного усилителя. В первом случае, мощность светового пучка на входе лазерного усилителя мала и усиливаемое излучение не меняет инверсную населенность уровней. Тогда световое поле на выходе лазерного усилителя будет иметь поперечное распределение, совпадающее с таким распределением, какое было бы и при отсутствии усиливающей среды, но усиленное в ехр($Ь) раз, где [3 - ненасыщенный коэффициент усиления. Во втором, общем случае, нужно учесть влияние усиливаемого излучения на инверсную населенность уровней, т.е. учесть эффект насыщения усиления.

Особенно сильные искажения претерпевает сигнал в том случае, когда большое усиление сосредоточено на малой длине. При увеличении длины усилителя относительная доля искажений должна снижаться, однако провести анализ для произвольного вида сигнала в этом случае не удается. Поэтому построение общей модели формирования изображения в усилителе яркости для произвольного вида сигнала невозможно, и нужно рассматривать каждый конкретный случай в отдельности.

Математическая модель формирования сигнала со сложной поперечной структурой в лазерном усилителе построена на основе теоретического подхода развитого в работах [2,3]. Математическая модель формирования изображения в оптической системе с лазерным усилителем яркости отражает в себе объединенное решение задачи дифракции светового пучка на элементах оптической схемы и задачи преобразования сигнала в лазерном усилителе яркости при учете нелинейного эффекта насыщения.

В численных расчетах были использованы оптические изображения области лазерного воздействия на поверхность вещества, полученные экспериментально. Изображения имели сложное, случайное распределение яркости. Показано, что в линейном режиме усиления изображение практически полностью совпадает с исходным, а при наличии насыщения контраст изображения заметно ухудшается.

Исследование термохимических реакций проводилось на образцах из различных металлов и сплавов: сталь различных марок (20, 40, 60, нержавеющая сталь марки 10Х17Н2), медь электролитическая, латунь, титановый сплав ВТ9, свинец и др. Образцы подвергались воздействию излучения твердотельного лазера УАв^с! различной мощности (до 30 Вт) сфокусированного в пятно диаметром 0,1 мм. На оптических изображениях отчетливо выделяется область воздействия лазерного излучения на поверхность металла и расходящийся фронт в виде локализованной темной полосы. Основываясь на результатах проведенных экспериментальных исследований, описываемый фронт был интерпретирован как интерференционный минимум отражения от системы окисел-металл в случае образования на поверхности металла компактного окисла.

Образующийся на поверхности металла слой окисла существенно изменяет условия отражения зондирующего излучения, что позволило, исходя из изменений коэффициента отражения излучения лазера на парах меди, определять толщину этого слоя. Толщина слоя окисла определялась в предположении достаточно плавного изменения параметров слоистой системы окисел-металл вдоль облучаемой поверхности, так что локально выполняются известные соотношения для коэффициента отражения излучения по амплитуде от системы окисел-металл.

Полученные зависимости качественно правильно отражают динамику и распределение слоя окисла на поверхности образца титана в условиях неоднородной освещенности. Однако экспериментальная зависимость имеет более сложный характер, что, по-видимому, является следствием как неоднородных свойств поверхности металла, так и влияния других факторов на коэффициент отражения (например, неоднородности слоя окисла, вызванной появлением трещин слоя окисла (разбиением окисла на зер- на)[4]).

Одним из важных требований к волоконно-оптическим системам связи является реализация малых потерь, вносимых волоконно- оптическими элементами. Волоконно-оптические системы передачи информации, как правило, создаются не на одном непрерывном световоде, а предполагают соединения многих оптических волокон, в том числе и неразъемные, осуществляемые сваркой. Сварное соединение становится своеобразным дефектом на пути исследования передаваемого сигнала и приводит к его дополнительному затуханию. Поэтому принципиальным становится вопрос о качестве сварного соединения.

Для решения сформулированной выше задачи были проведены исследования процесса сварки оптических волокон при помощи разработанной экспериментальной установки по исследованию высокотемпературных процессов обработки устройств оптоэлектроники. Установка включает в себя аппарат для электродуговой сварки оптических волокон, сопряженный с лазерным монитором на основе лазера на парах меди. Лазер на парах меди, являющийся основным элементом экспериментальной установки, осуществляет подсветку, усиление яркости изображения области обработки и фильтрацию от излучения фоновой (паразитной) засветки.

Описанная выше экспериментальная установка и методика диагностики процесса сварки оптических волокон лежат в основе разработанного способа контроля соосности волоконных световодов. Разработанная установка позволила визуализировать процесс получения сварного соединения световодов и наблюдать его от начала (позиционирование оптических волокон) до конца (выравнивание и остывание оптического волокна).

Важнейшие предпосылки для применения лазерного излучения в целях формировании микро- и наноструктур обусловлены высоким уровнем понимания фундаментальных законов при развитии лазерно- индуцированных процессов. Следует отметить, что к моменту проведения данных исследований существовал ряд проблем, который требовал разрешения. В качестве одной из таких проблем можно отметить динамику развития пространственных и временных термодинамических и гидродинамических неустойчивостей, индуцированных лазерным излучением, так как именно в условиях неустойчивостей следует ожидать формирования микро- и наноструктур при лазерном воздействии. Решение такого рода задач представляет несомненный интерес. Однако математические модели существуют только для слабо неравновесных систем. Например, при термокапиллярной конвекции в теоретических моделях рассматривается многовихревая конвекция. Необходимо сделать следующий шаг в моделировании и рассмотреть переход к турбулентному режиму движения расплавов под действием лазерного излучения. Представляется весьма важным выбор количественных признаков и показателей перехода к хаотическому состоянию гидродинамических колебаний расплава. В данной работе анализ проводился на основе обработки оптических изображений области лазерного воздействия, которые были получены при помощи лазерного монитора. В качестве количественных параметров, характеризующих состояние поверхности, были выбраны информационная и топологическая энтропия, которые в дальнейших исследованиях использовались как критерии порядка наблюдаемых оптических изображений.

Таким образом, в диссертационной работе выбраны объекты исследований, определены задачи исследований. В качестве основного экспериментального метода лазерной диагностики в реальном масштабе времени выбран метод лазерной проекционной микроскопии с компьютерной обработкой оптических изображений. Изучение свойств полученных микро- и наноструктур проводилось с помощью зондовых микроскопов 8МЕЫА и 1ЧТЕОКА, точность разрешения которых удовлетворяла требованиям, поставленным в исследовании. Отдельные образцы исследовались методом электронной сканирующей микроскопии.

В главе 2 представлено исследование временной эволюции рельефа поверхности графита, подвергающейся воздействию лазерного излучения. Лазерное воздействие на поверхность твердого тела может приводить к твердофазному разрушению (сублимации), минуя фазу расплава. В связи с этим представляет интерес применение экспериментальной методики, рассмотренной в предыдущей главе для изучения материалов, в которых происходит сублимация под действием лазерного излучения. В качестве объекта исследования был выбран графит. Основанием для такого выбора послужило то обстоятельство, что наблюдение эволюции поверхности графита под действием лазерного излучения представляет самостоятельную актуальную задачу. Эта актуальность обусловлена тем, что в настоящее время во многих технологических процессах обработки графитовых образцов с целью получения новых материалов (алмазоподобных пленок, на- нотрубок и т.д.) активно применяются лазерные комплексы.

С помощью лазерного монитора получены видеоизображения поверхности графита, подвергающейся воздействию сконцентрированного лазерного излучения. Зафиксировано существование перемещающегося по нагреваемой поверхности светлого кольца. Предложен и реализован метод восстановления рельефа поверхности по видеоизображению, получаемому с помощью лазерного монитора. Восстановлен эволюционирующий во времени рельеф поверхности графитового образца. Относительные изменения высот рельефа в процессе лазерного воздействия прослеживаются вполне надежно. Поперечные размер неоднородностей очень слабо зависит от формы диаграммы отражения, что позволило надежно определить как статистические характеристики размеров неоднородностей, так и характер изменения этих характеристик в процессе лазерного воздействия на поверхность графитового образца.

До недавнего времени проблема существования карбина на фазовой диаграмме углерода находила свое отражение в существовании двух альтернативных фазовых диаграммах углерода. Согласно первой из них [5], в интервале температур АТ = 2600 - 3800 К существуют устойчивые фазы карбина. При полной конверсии графита в карбин реализуется карбиновая тройная точка твердое тело-жидкость-пар, давление и температура в которой соответственно равны р,пт = 2-104 Па и Ттт = 3800 К. Согласно второй фазовой диаграмме [6], существует только графитовая тройная точка твер-

дое тело-жидкость-пар с параметрами ртт =10 Па и Ттт = 5000 К. Существование области карбина ставится в этой диаграмме под сомнение. Единственной работой, в которой плавление углерода при давлении около 1 бар и температуре около 3800 К зафиксировано с помощью скоростной киносъемки по отрыву капель жидкого углерода от зоны нагрева, создаваемой сконцентрированным лазерным излучением на боковой поверхности вращающегося с большой скоростью пирографитового цилиндра, является работа [7]. До сих пор результаты [7] никем не повторены, что, по- видимому, и служит главной причиной сомнений в их надежности. По- видимому, главная причина сомнений в достоверности результатов заключается в отсутствии однозначных свидетельств плавления углерода, будь то приборная регистрация процесса плавления в реальном времени или наличие значительных количеств карбина в переплавленном графите.

В диссертации представлены результаты непосредственной регистрации приборным методом плавления углерода, нагреваемого сконцентрированным лазерным излучением при давлении порядка 1 бар, и исследована структура переплавленного графита. Графитовый образец нагревался сфокусированным излучением импульсно-периодического УАС:Мс13+- лазера (частота повторения импульсов 150 Гц, длина волны излучения 1,06 мкм, длительность импульса излучения 3 мс). Средняя мощность излучения Р регулировалась в пределах от 20 до 80 Вт. Регистрация зоны взаимодействия лазерного излучения с поверхностью графита осуществлялось с помощью усилителя яркости на основе лазера на парах меди (ЛПМ). Для наблюдения вытекания жидкого углерода использовалась наклонная геометрия, когда излучение УАО:Мс13+-лазера направлялось под углом 60, а излучение ЛПМ под углом 90 (перпендикулярно) к поверхности образца. Излучение УАО:№3+-лазера фокусировалось на поверхности графитового образца в пятно, имеющего форму неправильного эллипса с поперечными размерами около 0,15 мм и 0,7 мм. Поперечные размеры зоны наблюдения составляли примерно 1,4 мм. Регистрация оптических изображений нагреваемой поверхности образца осуществлялась с помощью цифровой камеры с частотой 500 кадров в секунду. В качестве исследуемого образца был выбран графит, который является чистым в аспекте проведенных спектральных измерений и применяющийся в лабораторных угольных дугах с целью использования анодного пятна в качестве эталона яркостной температуры (3800 К) на длине волны 0,65 мкм. Содержание примесей в материале образцов: Бе - 9-10'5 %, - 3-Ю'5 %, Мп - 8-10'5 %, А1 - 1-Ю"3 %, 81 - 5-10"4 %, Си - 1 10"4 %, В - 2-10-4 %. Такой же графит использовался в работе [8], в которой был осуществлен поиск признаков плавления углерода в катодном и анодном пятнах угольной дуги. Основным средством наблюдения служил также лазерный усилитель яркости.

Экспериментально зарегистрировано вытекание жидкого углерода, приводящее к разрушению соответствующей части ободка лазерной каверны и растеканию жидкого углерода по поверхности образца на расстояние около 0,2 мм от ободка каверны. Время, в течение которого происходит вынос жидкого углерода за пределы каверны, не превышает 0,3 с. В дальнейшем движение расплава по поверхности прекращается, он кристаллизуется. После этого внешний вид каверны мало меняется и хорошо сохраняется после охлаждения образца.

В диссертации предложен метод восстановления трехмерного рельефа поверхности на основе двумерного оптического изображения. Метод основан на законе отражения лазерного излучения от поверхности исследуемых образцов с учетом отражательных свойств материала (индикатрисы рассеяния при отражении). Для восстановленных рельефов оценивалась шероховатость поверхности с использованием статистики Херста [9]. Показано, что шероховатость поверхности уменьшается со временем, что связано с образованием жидкой фазы внутри лазерной каверны.

Согласно данным о температуре углерода в областях замыкания тока на катодах сильноточных угольных дуг в свободном воздухе, существует предельная температура 4000 К, которая достигается при токе дуги 400 А и не изменяется с его дальнейшим ростом. В [7] эта температура отождествляется с температурой кипения углерода. Однако независимо от того, определяется это значение температуры кипением или сублимацией углерода, ее достижение должно сопровождаться сильной эрозией поверхности. Какие-либо признаки эрозии поверхности углерода в зоне «выноса» отсутствуют. Это означает, что температура углерода в названной зоне во время ее формирования не превышает 4000 К.

Для исследования изменений структуры переплавленного углерода относительно начальной структуры графита использовалась спектроскопия комбинационного рассеяния света (КР). Регистрация спектров КР осуществлялась на лазерном КР спектрометром ЬаЬгат, оснащённом охлаждаемым CCD детектором и микроскопом. Спектры, полученные от разных участков образца вне зоны лазерного воздействия, практически совпадают, а интенсивность полосы D по сравнению с интенсивностью полосы G несколько больше. Это указывает на то, что исходный образец представляет собой достаточно сильно разупорядоченный графит. Спектры, зарегистрированные от «зоны выноса» близки к спектрам областей внутри каверны, однако отношение интенсивностей G и D линий на спектрах, полученных от различных областей каверны, несколько меняется от точки к точке, а в зоне выноса остаётся практически постоянным. Таким образом, внутренняя часть каверны более гетерогенна, чем «зона выноса». Важно отметить, что интенсивность D линии на спектрах исходного графита заметно больше таковой, чем на спектрах от зоны, обработанной лазером. Это свидетельствует о том, что степень упорядоченности графита в исходном образце заметно ниже, чем в зонах, подвергшихся мощному лазерному воздействию.

Исследования процесса взаимодействия лазерного излучения с графитом в реальном времени с использованием лазерного монитора позволили зарегистрировать образование жидкой фазы графита при давлении порядка 1 бар, экспериментально подтвердив тем самым реальность существования карбиновой тройной точки твердое тело—жидкость-пар.

Проведены исследования области лазерного воздействия при помощи зондового микроскопа. При мощности лазерного излучения 60 Вт и более реализуется существенно неоднородный (волнообразный) рельеф дна каверны. Этот факт согласуется с тем обстоятельством, что при меньшей мощности лазерного излучения плавления углерода в каверне не происходит, а ее дно формируется в результате сублимации твердого углерода. При мощности лазерного излучения 60 Вт внутри каверны образуется жидкий углерод, гидродинамические возмущения которого способны привести к образованию неровностей поверхности дна каверны.

Рельефы (структуры) поверхностей различных зон области лазерного воздействия свидетельствуют об изменении структуры графита в зонах нагрева и выноса жидкого углерода. Этот факт хорошо согласуется с данными КР-спектроскопии, согласно которым степень графитизации углерода в зоне нагрева и выноса жидкого углерода заметно выше степени его графитизации в исходном материале.

В главе 3 проведено исследование возможности образования наноструктур на поверхности углеродосодержащих образцов под действием лазерного излучения. Это является в настоящее время одним из наиболее активно развивающихся направлений лазерной физики. Развитие данной отрасли связано с тем, что свойства образующихся наноструктур существенно зависят от параметров лазерного излучения (длина волны, длительность импульса, форма пучка), разработанные в последнее время лазерные системы позволяют охватить большой диапазон данных параметров, что позволяет рассчитывать на генерацию наноструктур с заданными свойствами.

В качестве объекта исследования использовался стеклоуглерод (СУ). Из-за своей аморфной структуры, данный материал сравнительно легко поддается воздействию лазерного излучения с плотностью мощности не

П О

превышающей 10 Вт/см . Указанный диапазон интенсивности в настоящее время является достаточно распространенным в технологических лазерных системах. В проведенных опытах обнаружены зависимости морфологических свойств генерируемых наноструктур от расстояния до центра области воздействия. Показано, что механизмы их образования имеют различную природу. Зафиксированы признаки образования расплава в центре лазерной каверны и осаждения из газовой фазы за границами области воздействия. Образец из стеклоуглерода подвергался воздействию излучения ла-

Л I

зера на YAG:Nd с длиной волны X = 1,06 мкм, работающего в импульсно периодическом режиме с частотой следования импульсов /= 150 Гц и длительностью импульса т = 1,5 -г 2,5 мс, размер лазерного пятна на образце изменялся от 100 до 400 мкм. Средняя мощность излучения варьировалась в пределах 30^80 Вт, при этом обеспечивалась плотность мощности излучения на

поверхности образца до 10 Вт/см . Длительность времени воздействия составляла от 1 до 10 секунд.

Свойства образцов после воздействия исследовались при помощи атомно-силовой микроскопии (АСМ). Результатом зондирования материала являются изображения его поверхности. В ходе экспериментов удалось установить, что наиболее яркие признаки плавления СУ обнаруживаются на максимальной мощности Р - 80 Вт для длительности воздействия не менее t = 3 с при давлении порядка 1 атм. Поэтому для анализа была принята условная граница по времени воздействия. Проведенные эксперименты показали, что для каверн, полученных при времени воздействия менее 3 с, наблюдаются характерные особенности:

а) образование двух визуально различимых областей: 1 - область непосредственного воздействия с гладким рельефом; 2 - область кольцевых образований, сильно рассеивающая свет.

б) АСМ позволила обнаружить наноструктурирование поверхности образца: в первой области наблюдались структуры типа «сталогнитов» - провалов в поверхности, для второй - характерны образования структур в виде «нанопиков».

Можно отметить, что размер структур типа «сталогнитов» неоднороден и колеблется от 0,08 до 5 мкм по основанию. При этом средний продольный размер достигает 200 - 400 нм. Обнаруженные внутри области 2 образования «нанопиков» имеют диаметр основания 0,4 - 0,5 мкм, высоту 60 - 300 нм и наблюдаются разрозненными структурами у центрального кольца. К внешнему краю встречаются более уплотненные образования с меньшей высотой, но большие по основанию. При увеличении времени воздействия t > 3 с наблюдался рост количества типичных зон, то есть при сканировании явным образом можно определить качественное изменение рельефа поверхности образца.

Отслеживалось изменение радиального размера наблюдаемой области в целом, глубины центральной зоны каверны, изменение высот рельефа в переходных областях, а также образование множества разломов в центральной зоне. Обнаружены почти регулярные квазидоменные структуры. Из-за высокой повторяемости структур их изображение напоминает образование нанозерен на поверхности материалов, обрабатываемых при высоких давлениях и температурах. Отличие вида границ «доменов» позволяет определить, что они сформировались под действием различных процессов. Образование ярко выраженных правильных многоугольников (в нашем случае наблюдались пяти- и шестиугольники) позволяет говорить о кристаллизации тонкого слоя однородной жидкости на аморфной поверхности. На границе каверны наблюдается образование ярко выраженных кольцевых структур. Между кольцевыми выпуклостями поверхность сильно неоднородна, фиксируются множественные «складки» и образование наношероховатости. На границах области лазерного воздействия были обнаружены образования «нанопиков», при этом на поверхности образцов удаётся выделить «переходную область». Её отличительной особенностью является возможность обнаружения исходного рельефа образца под «новообразованиями». Данная область имеет хорошо прослеживаемые границы, её размер зависит от мощности и длительности воздействия лазерного излучения.

Природа возникновения такой зоны неоднозначна. Возможно, процесс её формирования связан с осаждением горячих паров материала, покидающих область воздействия. Можно утверждать, что твердофазное разрушение поверхности под действием возникающих термических напряжений в данном случае не является доминирующим механизмом, поскольку сохраняется первоначальный рельеф. Исследования методом электронной сканирующей микроскопии в основном подтвердили выводы, полученные на основе АСМ. Однако позволили детализировать область лазерного воздействия и выявить характерные детали плавления. В частности, обнаружена область, в которой сформировались микропоры с характерными размерами порядка 5 мкм. В качестве физического механизма формирования микропор предложена неустойчивость Релея-Тейлора на границе жидкий углерод-пары углерода. Возможной причиной образования микропор может быть также кипение жидкого углерода, при котором в жидком углероде поднимаются пузыри газа. И в том, и в другом случае предполагается существование жидкой фазы углерода и быстрая кристаллизация поверхности после выключения лазерного излучения.

В главе 4 разработана экспериментальная методика получения нано-

структур в поле мощного лазерного излучения (1-10 Вт/см ) при осаждении паров углеродосодержащих материалов на поверхность холодной подложки. Особенностью данного метода является облучение образца в атмосферном воздухе при комнатной температуре и давлении близким к 1 атм. Были выявлены закономерности изменения морфологических свойств получаемых наноструктур от зазора между подложкой и образцом. Обнаружены изменения свойств оседающих частиц: изменение размеров наноструктур и их характерной формы в зависимости от выбранного материала. Проведены опыты по напылению углерода на поверхность холодной подложки при воздействии излучения YAG:Nckna3epa в атмосферном воздухе на поверхность углеродосодержащих материалов различной плотности и степени графитизации.

В качестве холодной подложки использовалась пластина кварцевого стекла, которая располагалась над образцом. Расстояние между пластиной и образцом изменялось от 2,5 мм до 0 (когда подложка лежит на образце), поэтому можно говорить, что напыление наблюдалось в слоистой структуре: прозрачная среда - слой воздуха - поглощающая среда.

Углеродосодержащие образцы (стеклоуглерод, пирографит, спектрально чистый графит) подвергались воздействию лазерного излучения с длительностью импульса 1,5 мс, при этом YAG:Nd лазер работал в режиме свободной генерации с максимальной средней мощностью излучения 100 Вт и частотой следования импульсов 150 Гц. Использование данного режима генерации позволило создавать «долгоживущую» плазму над поверхностью образца. Средняя длительность воздействия составляла 30 с, мощность излучения изменялась от 30 Вт до 60 Вт, размер пятна на образце составлял 400 мкм.

После воздействия поверхность подложки исследовалась методами атомно-силовой микроскопии с помощью сканирующего зондового микроскопа INTEGRA, работающего в контактном режиме с максимальной площадью сканирования 50x50 мкм и точностью порядка 10 нм в плоскости сканирования. Измерялись рельеф поверхности и распределение локальной силы трения (латеральные силы), поскольку в данном режиме сканирования возможно получение более контрастного изображения, что позволяет уточнить рельеф образца и отделить исходный материал подложки от поверхности напыления. При осаждении паров, образующихся над поверностью стеклоуглерода в процессе воздействия лазерного излучения (мощность 46,5 Вт, время облучения 30 с и зазор между образцом и подложкой 0,5 мм), удалось зафиксировать на поверхности равномерное распределение напыления в виде отдельно стоящих конусов со средней высотой 40 нм и основанием 300 мкм.

Были проведены эксперименты при том же значении мощности с зазорами от 0,8 мм до 1,5 мм. Существенных изменений рельефа обнаружить не удалось. При дальнейшем увеличении расстояния наблюдалось значительное разрежение полученных структур, вплоть до полного отсутствия напыления при расстоянии 2 мм. При аналогичных условиях воздействия на поверхность спектрально чистого графита марки ЭГ-2А, для величины зазора 1,5 мм на поверхности холодной подложки удалось выделить образование конгломерата упорядоченных структур, стремящихся образовать замкнутые формы эллиптического вида с диаметром от 3 до 5 мкм и высотой стенок около 35 нм. С увеличением расстояния наблюдалось сначала искажение формы напыления со значительным уменьшением доли замкнутых объектов, а потом образование равномерного напыления на подложке. При удалении на расстояние больше 2,5 мм напыление не было замечено.

В процессе осаждения паров углерода, образующихся над областью воздейстия лазерного излучения на поверхности пирографита, наблюдались образования кольцевых структур на поверхности подложки. Наиболее ярко данные образования зафиксированы на расстоянии 0,8 мм подложки от материала.

Внутри кольцевых структур большого диаметра 3-6 мкм, обнаруживаются образования наноконусов с высотой близкой к высоте стенок кольцевых образований. Внутри «колец» меньшего диаметра дополнительных образований не наблюдалось. Высота стенок явным образом зависит от диаметра структуры и изменяется в среднем от 20 до 90 мкм. Такое поведение напыления позволяет предположить, что структура напыления повторяет доменную структуру поверхности пирографита, таким образом поток частиц с поверхности на небольших расстояниях стратифицирован. Данное предположение подтверждается опытным путем, на расстояниях более 1,5 мм замкнутые структуры не наблюдаются: с величины зазора 2 мм фиксируется равномерное распределение напыления. Для подтверждения данной гипотезы были проведены опыты по напылению паров пироуглерода на холодной подложку при расположении ее на поверхности образца. В связи с тем, что в режиме свободной генерации лазерное излучение нагревало подложку до ее разрушения, в данных опытах использовался УАв^ё-лазер с модуляцией добротности и длительностью импульса порядка 150 не, средней мощностью 20 Вт и пятном на образце порядка 50 мкм.

Обнаружено, что при контактном напылении, структура напыления хорошо повторяет форму поверхности образца.

Дифракционная задача и формирование поля на входе лазерного усилителя

Достоверность и обоснованность полученных результатов определяется проведением комплексных экспериментальных исследований ла- зерно- индуцированных пространственно- временных неустойчивостей и поверхностных структур при лазерном нагреве и плавлении твердых тел методами оптического лазерного зондирования и измерений микро- нано- параметров изучаемых объектов с помощью сканирующей зондовой и электронной микроскопии. Результаты данных экспериментов сопоставлены с выводами выполненных теоретических исследований, с использованием математического моделирования и подходов нелинейной динамики для распознавания оптических изображений в условиях развития нелинейных волновых процессов и неустойчивостей, индуцированных лазерным излучением в конденсированной среде.

Используемые экспериментальные методики и теоретические подходы: - поверхности исследуемых твердотельных образцов из различных материалов шлифовались и производилась их оптическая полировка; в отдельных случаях наносились покрытия на поверхность образцов методом вакуумного напыления и химического осаждения; - эксперименты выполнялись с использованием современных авто- матизированных лазерных комплексов, работающих в импульсно- периодическом и непрерывном режимах; исследование динамических нелинейных процессов в области воздействия мощного оптического излучения неодимового лазера (излучение накачки) на материалы проводилось в реальном масштабе времени при помощи оригинальной экспериментальной методики с использованием лазерного усилителя яркости (лазер на парах меди) с компьютерной обработкой оптических изображений, регистрируемых скоростной цифровой камерой; изучение морфологии получаемых поверхностных наноструктур осуществлялось при помощи сканирующей электронной и зондовой микроскопии; для изучения скорости ла- зерно-индуцированных гидродинамических течений применялся допле- ровский анализатор; - для теоретического описания термохимических и гидродинамических процессов и неустойчивостей, возбуждаемых лазерным излучением в конденсированной среде, применялись методы математического моделирования на основе уравнений нелинейной динамики и численного моделирования; пространственные характеристики возбуждаемых лазерным излучением поверхностных структур, которые регистрировались в виде динамических оптических изображений, моделировались на основе подходов фрактальной геометрии.

Научная новизна работы заключается в получении приоритетных результатов как в фундаментальном, так и в прикладном аспектах при взаимодействии лазерного излучения с поверхностью различных твердых тел в условиях формирования поверхностных микро- и наноструктур при лазерном нагреве и расплаве вещества образцов, а также в разработке физических моделей для описания наблюдаемых нелинейных волновых процессов и неустойчивостей, индуцированных лазерным излучением на поверхности твердых тел. Эти результаты работы могут быть сформулированы следующим образом.

Разработан оригинальный экспериментальный метод визуализации в реальном масштабе времени области лазерного воздействия на поверхность твердого тела, недоступной при стандартных методах измерения из-за экранирования области взаимодействия плазменным факелом, возникающим непосредственно над поверхностью облучаемого материала, с использованием лазерного усилителя яркости с компьютерной обработкой получаемых оптических динамических изображений.

На основе данного метода впервые обнаружена жидкая фаза графита, образующаяся при его плавлении при внешнем атмосферном давлении 1 атм. и температуре около 4000 К. Процесс образования жидкого углерода при плавлении графита в поле сфокусированного лазерного пучка регистрировался в реальном масштабе времени с фиксацией всех этапов развития пространственно-временных неустойчивостей и нелинейных волновых процессов в расплаве.

Впервые экспериментально получены и исследованы методами зондовой и электронной микроскопии микро- и наноструктуры, образующиеся при лазерном воздействии на поверхность стеклоуглерода. Показано, что наноструктуризация поверхности происходит как в условиях кристаллизации жидкой фазы углерода внутри ванны расплава, так и из-за осаждения паров вещества на холодную поверхность за ее пределами. Обнаружены несколько типов пространственных наноструктур с управляемой топологией - нанопики, микропоры, квазидомены — в зависимости от выбираемых параметров лазерного пучка и условий эксперимента.

Зарегистрировано новое явление — образование упорядоченных субмикронных структур и наноструктур при воздействии мощного лазерного излучения на слоистую систему: прозрачная среда (стекло), тонкий воздушный слой, поглощающая среда (графит). При использовании микро- и наноструктурированного графита в такой системе в результате процесса лазерной абляции эти микро- наноструктуры переносятся (копируются) на поверхность прозрачной среды. Для данной схемы лазерной фотолитографии определены оптимальные геометрические параметры слоистой системы и критические режимы осаждения, приводящие к образованию упорядоченных структур управляемым образом.

Методика восстановления трехмерного рельефа поверхности по ее двумерным изображениям

Обнаружено, что при контактном напылении, структура напыления хорошо повторяет форму поверхности образца.

Глава 5 посвящена изучению лазерно-индуцированных гидродинамических процессов на поверхности расплавов металлов и сплавов. В ней рассматриваются нелинейные колебания и волны, возбуждаемые лазерным излучением в расплавах в области лазерного воздействия в условиях, характерных для современных лазерных технологических процессов обработки материалов. Основной акцент сделан на изучение перехода гидродинамических процессов в турбулентный режим. Изучена многовихревая конвекция в ванне расплава металла. Разработанная теоретическая модель многовихревого течения, индуцированного лазерным излучением, является переходным этапом при развитии неустойчивостей жидкости и переходу к турбулентному режиму.

Развитие гидродинамических процессов при определенных условиях позволяет развиться в ванне стохастическим автоколебаниям, как правило, в гидродинамическом эксперименте в данном случае будет наблюдаться режим «перемежаемости», то есть такой процесс, при котором квазипериодическое движение сменяется стохастическим. Описание такого процесса возможно с использованием нелинейных динамических систем, особенностью которых является наличие существенной зависимости поведения системы от начальных условий.

В данной главе на примере лазерно-индуцированной термокапиллярной неустойчивости рассмотрены особенности процессов тепло- и массо- переноса, приводящие к многовихревой конвекции при формировании лазерной каверны. Отмечены характерные особенности гидродинамических процессов внутри каверны в зависимости от мощности локального нагрева поверхности жидкости и размеров каверны. Рассмотрены механизмы формирования стохастического автоколебательного режима гидродинамических течений и сформулированы основные принципы, позволяющие качественно и количественно описывать свойства данных процессов.

Экспериментально при лазерной резке, сварке металлов и в других лазерных технологических процессах было обнаружено, что на обрабатываемой поверхности остаются застывшие регулярные волновые и нерегулярные структуры, пространственный период которых составляет порядка 0,01 - 0,1 мм [10]. Естественно предположить, что эти волновые структуры образуются при кристаллизации поверхности расплава, по которой распространяются волны, возбуждаемые при лазерном воздействии. Такие волны в жидкости известны как капиллярные. Условия их генерации, распространения и основные характеристики изучены достаточно подробно. Однако количество экспериментальных работ, в которых были предприняты попытки наблюдения в реальном времени волн, возникающих под действием лазерного излучения на поверхности жидкого металла, сравнительно невелико. Основными причинами, затрудняющими исследования такого рода, являются малый масштаб области воздействия и высокая температура внутри нее, а главное, наличие яркого экранирующего плазменно-эрозионного факела над изучаемой зоной, который усложняет ее визуальный контроль. Во многих случаях изображение области лазерного воздействия представляет собой сложное распределение участков различных градаций яркости, формы и оттенки которых меняются во времени. В частности, так выглядит оптическое изображение области развития гидродинамических неустойчивостей, индуцированных лазерным излучением в расплаве металла в режимах характерных для определенных лазерных технологических процессов. В связи с этим представляет несомненный интерес применение статистических методов обработки оптических изображений для идентификации режимов развития лазерно- индуцированных неустойчивостей на поверхности вещества.

В данной главе проведена классификация оптических изображений области лазерного воздействия на поверхности металла, полученных при помощи описанной выше экспериментальной установки. В процессе воздействия одного лазерного импульса длительностью х = 1,5 мс характер оптического изображения меняется от регулярного в начале воздействия до хаотического и волновых структур.

На основе оригинальной методики обработки оптических изображений получено распределение энергии по пространственным частотам для гидродинамического процесса в области лазерного воздействия при различных значениях плотности мощности излучения. Расчет энергии, приходящийся на соответствующий пространственный масштаб, проводился с использованием двумерного преобразования Фурье. Пульсации нормальной скорости соответствует разность яркости двух точек изображения, лежащих на расстоянии / друг от друга. Коэффициенты двумерного разложения в ряд Фурье рассчитывались для всех точек изображения для различных /. Искомая величина энергии определяется как //2, где /- Фурье-образ функции распределения пульсации яркости точек изображения.

На графиках распределения энергии по пространственным частотам, построенным в логарифмическом масштабе, можно выделить линейный участок убывания, наклон которого соответствует степени х — 1,43 в законе распределения энергии пульсации скорости по пространственным масштабам Е(к) = С1 к ш.

Средний радиус области, занимаемой расплавом (лазерной каверны) г = 0,3 мм, определяет внешний масштаб турбулентности 1тщ = 0,005 мм, что соответствует минимальному расстоянию между градациями яркости оптического изображения. Уменьшение плотности мощности приводит к смене гидродинамического режима, спектр пространственных частот практически не содержит линейного участка, что можно рассматривать как переход от развитой турбулентности к маломодовому режиму хаотических гидродинамических колебаний.

Для определения информационной сложности изображений использовались метрические фрактальные размерности, принятые в теории аттракторов, и рассчитывалась энтропия по Шеннону

Образование микро- и наноструктур на поверхности стеклоуглерода при лазерном воздействии

Еще одним методом, который может быть эффективно использован для диагностики поверхностных слоев твердых тел, является оптико- акустическая спектроскопия рэлеевских волн. Вклад в образование рэлеев- ской волны частоты со дают только источники звука расположенные в объеме среды на глубине z 3 СО " ( cR - сь )" , где cL и cR - скорости поверхностных рэлеевских и продольных акустических волн, поэтому данный вид оптико-акустической спектроскопии особенно удобен для диагностики поверхности. К достоинствам метода следует отнести возможность регистрации сигнала вне зоны возбуждения и соответственно более слабые требования к взаимной юстировке возбуждающего и пробного лучей. Для возбуждения поверхностных акустических волн используются лазерные импульсы с модуляцией добротности с частотой повторения импульсов порядка 10б - 107 Гц (например, лазеры на красителях). Часто излучение лазера фокусируется в полоску. Регистрация осуществляется контактными (встречно-штыревые преобразователи, пьезопреобразователи) или бесконтактными (например, интерферометрическими [12,24]) методами. Разрешение по поверхности метода определяется диаметром пятна излучения и составляет порядка 2 мкм. Однако оптические методы трудно применять при исследовании реальных объектов с сильно шероховатыми поверхностями. Для преодоления этого затруднения в [25] был предложен оптический метод регистрации поверхностных акустических волн, состоящий в измерении температурных вариаций, возникающих при их адиабатическом распространении. При лазерной генерации мощных коротких акустических импульсов температурные вариации становятся заметными и могут быть зарегистрированы бесконтактно методом инфракрасной радиометрии.

Простота и наглядность измерений при помощи визуальных микроскопов определили их прочные позиции в области измерений с пространственным разрешением не превышающем 0,2 мкм. Одним из основных их преимуществ является возможность измерения смещений в плоскости одной из поверхностей контролируемого объекта. Для сравнения, интерферометры, обеспечивающие наибольшую точность измерения смещения, не предназначены для измерения относительного смещения отдельных участков поверхности исследуемого объекта в этой поверхности. Основным недостатком подобных микроскопов является визуальная обработка информации, что влечет за собой появление субъективных ошибок, вносимых оператором. Для решения этой проблемы перспективны фотоэлектрические измерительные микроскопы, в которых проецируемое оптической системой изображение контролируемого объекта преобразуется в электрический сигнал фотоприемником [26]. Фотоэлектронные микроскопы отличаются сравнительной простотой, надежностью, обеспечивают объективность и возможность автоматизации измерений. Возможности подобных измерительных микроскопов существенно увеличились с использованием в них в качестве источника излучения лазеров, из которых наибольшее применение нашли Не-№ и С02-лазеры. В таких микроскопах можно получить световое пятно (зонд) малого диаметра, сравнимого с длиной волны излучения лазера, а, следовательно, повысить разрешающую способность. Кроме того, большая интенсивность излучения лазеров позволяет существенно увеличить чувствительность прибора. Однако это достоинство лазеров как источника излучения можно использовать только в том случае, если оно не приводит к изменению состояния контролируемого объекта или процесса. В противном случае для повышения чувствительности измерительной системы необходимо усиление сигнала.

Основная причина привлекательности применения усилителей яркости на основе активных сред лазеров в системах оптического исследования и диагностики заключается в том, что усилитель яркости выступает в качестве активного фильтра. Активная среда усилителя яркости многократно усиливает проходящее через нее излучение, но только в узкой полосе частот, соответствующей собственному контуру излучения активной среды. В результате, если зондирование исследуемого объекта производится излучением активной среды усилителя яркости, то излучение, несущее полезную информацию, на приемном устройстве значительно превосходит по мощности различного рода паразитное излучение.

Эта особенность применения усилителей яркости инициировала широкое их исследование. Была сформулирована система требований к усилителям яркости для оптических систем [1,27-29]: 1. Активная среда должна обладать оптической однородностью или, в общем случае, высоким оптическим качеством с тем, чтобы не вносить заметных искажений в усиливаемое изображение или вообще в усиливаемое распределение интенсивностей и фаз. 2. Геометрические размеры и угловая апертура активной среды (и усиливающего элемента в целом) должны обеспечивать прохождение через нее пучков света, несущих информацию об объекте, в том числе обеспечивать желаемое разрешение и число разрешаемых элементов. 3. Реальное усиление активной среды за один проход должно быть достаточно велико, чтобы обеспечить значительное усиление яркости. В частности, достижимая величина усиления определяет возможность повышения линейного увеличения оптической системы. 4. Наряду с большим усилением активная среда должна обладать для многих реальных применений еще и достаточно большой выходной мощностью, например, обеспечивать мощность, требуемую для освещения экрана больших размеров.

Исследование области осаждения аблированных частиц на подложке при помощи сканирующего зондового микроскопа

После настройки лазерного монитора открывалась шторка УАО-лазера, его излучение направлялось на мишень, и производилась совместная юстировка "силового" и визирного каналов установки. При этом точность совмещения осей была не хуже 0,02 мм. Размер пятна излучения твердотельного лазера на поверхности исследуемого образца независимо регулировался, что позволяло, в зависимости от условий эксперимента, исследовать процессы как для практически однородной освещенности области воздействия, так и при неоднородной освещенности. Область воздействия излучения твердотельного лазера легко идентифицировалась по уменьшению отражательной способности (потемнению) поверхности образца и по разрушению первоначального микрорельефа (см. рис. 1.2).

Далее устанавливается мощность излучения твердотельного лазера, необходимая для инициирования исследуемого процесса. Интенсивность действующего на поверхность образца излучения и длительность воздействия зависит от того, до какой стадии и в каком режиме должно происходить взаимодействие лазерного излучения с материалом.

Под воздействием лазерного излучения изменяются оптические характеристики облучаемого материала, что приводит к изменению отражательной способности поверхности исследуемого образца, а также возникают различной природы поверхностные структуры, вызывающие изменение диаграммы отражения. Эти изменения условий отражения приводят к изменению регистрируемого изображения зоны взаимодействия лазерного излучения с поверхностью образца и определяются при его компьютерной обработке. Для этого полученные изображения оцифровываются (уровень яркости каждого элемента изображения преобразуется в соответствующий цифровой код) и в этом виде записываются в память компьютера. В результате в памяти компьютера формируются массивы кодов. При вычитании из массива, соответствующего определенному кадру изображения, массива, соответствующего предыдущему кадру изображения, остается только цифровая информация об происшедших изменениях на поверхности образца. Подобная процедура применяется и для повышения контраста регистрируемых изображений объекта [42]. Для этого оптический затвор, установленный между предметом и лазерным усилителем, последовательно открывается и закрывается синхронно с частотой кадров регистрирующей камеры (отраженное от затвора излучение лазерного усилителя направляют за пределы его апертуры). Это дает возможность в первом кадре записать изображение объекта и фона, а во втором кадре (при закрытом затворе) только изображение фона. При вычитании из массива, соответствующего первому кадру, массива, соответствующего второму кадру, остается только цифровая информация об изображении объекта. Далее осуществляется вывод на дисплей компьютера элементов полученного при вычитании массива для визуального наблюдения изображения объекта.

Преимущества разработанной экспериментальной установки при исследовании высокотемпературных процессов, протекающих при взаимодействии лазерного излучения с материалами в условиях образования паразитной засветки от эрозионного факела, экранирующего область воздействия, наглядно проявились при проведении сравнительного эксперимента, в котором излучение лазера на парах меди, отраженное от поверхности материала, делилось пополам светоделителем, и часть излучения направлялась на камеру в обход активной среды лазера на парах меди. В сущности, этот канал представляет собой обычную проекционную оптическую систему с лазером в качестве источника света. Оптические пути в обоих каналах практически одинаковые и изображение регистрируется камерой с одинаковым увеличением. Затем на образец направлялось излучение твердотельного лазера, интенсивность которого постепенно увеличивалось. При интенсивности излучения силового лазера порядка 4-10 Вт/см эрозионный факел развивается настолько, что его свечение полностью экранирует область взаимодействия лазерного излучения с поверхностью материала, не позволяя производить ее наблюдение. На изображение области взаимодействия, полученное в канале с усилителем яркости, это не оказывает влияние, а изображение, полученное в канале без усиления, становится непригодным для исследования процессов, протекающих на поверхности (рис. 1.4).

В разработанной экспериментальной установке используется компьютерная регистрация видеоизображения, сохраняющая все достоинства фото- и кинорегистрации процессов и обеспечивающая возможность последующей (в том числе и количественной) обработки полученных изображений с помощью современных компьютерных и программных средств [43-46]. Исследование области воздействия лазерного излучения производится по компьютерным изображениям, которые полностью идентичны изображениям, создаваемым оптической системой лазерного монитора в определенный момент времени. Временное разрешение определяется возможностями используемой ССО-камеры. Так кадр, фиксирующий состояние поверхности в определенный момент времени взаимодействия, дает качественную картину условий отражения в области взаимодействия. Детальное исследование производится по пространственному распределению яркости полученного изображения, построенному вдоль выбранной оси. При этом пространственное разрешение определяется как возможностями оптической системы лазерного монитора, так и возможностями используемой компьютерной техники и программного обеспечения [49,50]. Примеры временной и пространственной регистрации области взаимодействия приведены на рис. 1.5.

Похожие диссертации на Микро- наноструктуры и гидродинамические неустойчивости, индуцированные лазерным излучением на поверхности твердых тел, и их диагностика методами лазерной и зондовой микроскопии