Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Оптико-физические процессы при воздействии лазерного излучения на твердые биоткани Беликов, Андрей Вячеславович

Диссертация, - 480 руб., доставка 1-3 часа, с 10-19 (Московское время), кроме воскресенья

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Беликов, Андрей Вячеславович. Оптико-физические процессы при воздействии лазерного излучения на твердые биоткани : диссертация ... доктора физико-математических наук : 01.04.05 / Беликов Андрей Вячеславович; [Место защиты: ГОУВПО "Санкт-Петербургский государственный университет информационных технологий, механики и оптики"].- Санкт-Петербург, 2012.- 309 с.: ил.

Введение к работе

Актуальность работы

Лазеры с успехом используются в различных областях науки, техники и медицины. Созданные с привлечением лазерных источников биомедицинские технологии обработки мягких и твердых биотканей организма человека и животных отличают высокие селективность, прецизионность и эффективность.

Для обработки твердых биотканей широко используют лазерное излучение с субмиллисекундной длительностью импульса и длиной волны (А,), которая лежит в средней инфракрасной области оптического спектра. К таким лазерам можно отнести лазеры на кристаллах, активированных ионами неодима, гольмия или эрбия, работающие в режиме свободной генерации. Взаимодействие излучения этих лазеров с твердыми биотканями сопровождается целым рядом оптико-физических процессов, из которых для эффективной деструкции наиболее важным является взрывной процесс удаления биоткани, который называют абляцией. Излучение лазеров на кристаллах, активированных ионами эрбия, (эрбиевых лазеров) наиболее эффективно поглощается структурами твердых биотканей и производит их абляцию при наименьших энергетических затратах. Наибольший практический интерес вызывает использование субмиллисекундных эрбиевых лазеров для обработки твердых тканей зуба человека и животных. Однако скорость формирования полостей в твердых тканях зуба при их абляции излучением субмиллисекундных эрбиевых лазеров уступает скорости формирования полостей с помощью высокооборотной турбины. Попытки форсирования энергии лазерного излучения приводят к образованию трещин вокруг обрабатываемой полости, что недопустимо, т.к. они нарушают целостность окружающей место воздействия интактной биоткани и тем самым ослабляют ее функцию.

Таким образом, актуальность диссертационной работы обусловлена необходимостью создания новых эффективных методов лазерной обработки твердых биотканей, к которым относятся эмаль и дентин зуба человека.

К моменту начала настоящей работы (1994 г.) в литературе сведения о механизмах воздействия лазерного излучения на твердые биоткани были крайне противоречивы, отсутствовали теоретические модели лазерного воздействия, учитывающие особенности строения твердых биотканей. Также отсутствовали экспериментальные данные о порогах и эффективности лазерного удаления (абляции) твердых биотканей излучением YLF: Er (к=2.83 мкм) и YAG:Cr:Tm:Er (к=2.69 мкм) лазеров; об эффективности лазерного удаления твердых биотканей с и без внешнего водяного орошения, при контактном и неконтактном воздействии; о преобразованиях, природе и характеристиках оптико-физических процессов, протекающих в твердых биотканях при воздействии субмиллисекундных импульсов лазерного излучения среднего инфракрасного диапазона спектра с плотностями энергии ниже порога лазерной абляции и оптико-физических процессов, сопровождающих лазерную абляцию твердых биотканей и т.п. Ясно, что без этой информации невозможно создание эффективных биомедицинских технологий для обработки твердых биотканей лазерным излучением.

Уже первые исследования показали, что процесс абляции твердых биотканей субмиллисекундными лазерными импульсами состоит из нескольких стадий: лазерное излучение поглощается биотканью, поглощенное излучение стимулирует нагрев и разрушение биоткани, продукты разрушения (абляции) покидают зону обработки. На каждой из стадий оптико-физические свойства биоткани изменяются. Результат лазерного воздействия зависит от того, насколько лазерная система адекватна этим изменениям. Регистрация оптико-физических процессов при лазерном воздействии на твердые биоткани, получение информации о состоянии биоткани, подвергшейся лазерному воздействию, создание алгоритмов обработки этой информации и введение в систему управления работой лазера обратных связей позволяет оптимизировать процесс воздействия лазерного излучения на твердые биоткани. Оптимизация лазерной абляции может включать в себя не только оптимизацию параметров лазерного излучения, но и оптимизацию процессов, вызванных этим излучением. Например, в результате лазерной абляции твердых биотканей образуются продукты разрушения в виде твердых микрочастиц, которые могут как снижать эффективность абляции, ослабляя лазерное излучение, так и не влиять на эффективность абляции при их своевременной эвакуации из зоны обработки или повышать эффективность абляции биоткани при их возвращении обратно в зону обработки.

Таким образом, создание новых методов эффективной лазерной обработки твердых биотканей невозможно без исследования оптико- физических процессов, происходящих при воздействии лазерного излучения на твердые биоткани, изучения лазерной абляции твердых биотканей, ее механизмов и оптико-физических процессов, происходящих при лазерной абляции этих биотканей.

Цель диссертационной работы

Основной целью диссертационной работы является исследование оптико-физических процессов, происходящих при воздействии субмиллисекундных импульсов лазерного излучения среднего инфракрасного диапазона оптического спектра на твердые биоткани, и создание на его основе новых методов их эффективной лазерной обработки.

Для достижения поставленной цели необходимо решить следующие задачи:

разработать оптико-физическую модель воздействия лазерного излучения на эмаль зуба, учитывающую особенности ее строения;

изучить закономерности абляции твердых тканей зуба излучением лазеров среднего инфракрасного диапазона оптического спектра;

исследовать оптические спектры поглощения интактных и измененных в процессе лазерного воздействия или нагрева твердых тканей зуба;

исследовать спектральные и энергетические характеристики свечения эрозионного факела и акустического сигнала, возникающих при лазерной абляции твердых тканей зуба;

исследовать динамические процессы при воздействии лазерного излучения на твердые микрочастицы и оценить эффективность совместного воздействия лазерного излучения и твердых микрочастиц на твердые ткани зуба;

изучить закономерности совместного воздействия лазерного излучения, водяного и воздушного потоков на твердые ткани зуба.

Методы исследований

Для решения поставленных задач в работе были использованы как стандартные методы исследования процессов взаимодействия лазерного излучения с биотканями (оптическая микроскопия, сканирующая электронная микроскопия, рентгеноспектральный микрозондовый анализ), так и специально адаптированные для целей настоящей работы оптико- физические методы исследования, такие как оптическая и акустическая спектроскопия, цифровая фотосъемка с высоким временным разрешением, контактная термометрия, акустометрия, фотометрия, а также другие методы.

Научная новизна

В настоящей работе впервые:

    1. Разработана сотовая оптико-физическая модель воздействия лазерного излучения на эмаль зуба, учитывающая особенности строения эмали и позволившая определить структурные изменения, порог и эффективность абляции эмали зуба излучением эрбиевых лазеров.

    2. Исследовано поведение пиков поглощения свободной и связанной воды в оптических спектрах поглощения эмали зуба при ее нагреве от +20оС до +700оС. Установлено, что коэффициент поглощения эмали в области длин волн от 2.5 мкм до 3.5 мкм с ростом температуры нелинейно уменьшается.

    Показано, что данный оптико-физический процесс может оказывать существенное влияние на динамику воздействия излучения эрбиевых лазеров на твердые биоткани.

      1. Установлено, что при воздействии на твердые ткани зуба человека излучения эрбиевого лазера образуются продукты лазерной абляции в виде микрочастиц с размером до 200 мкм, оптические спектры поглощения которых отличаются от оптических спектров поглощения интактных твердых тканей зуба человека тем, что в продуктах абляции наблюдается существенный рост поглощения оптического излучения, связанный с карбонизацией органической компоненты ткани, а также отсутствует пик поглощения ОН-групп, что свидетельствует о разрушении этого типа связи в процессе абляции. Одновременное с лазерным воздействием орошение обрабатываемой твердой ткани потоком воды приводит к формированию продуктов лазерной абляции, оптические спектры поглощения которых не отличаются от оптических спектров поглощения интактных твердых тканей зуба человека.

      2. Исследованы амплитудно-частотные характеристики эрозионного факела и акустического сигнала, возникающих при лазерной абляции твердых тканей зуба. Показано, что спектры этих сигналов несут информацию о типе обрабатываемой ткани и условиях ее абляции.

      3. Обнаружено, что метаморфизированный слой, образующийся у стенки полости, сформированной в результате локальной абляции эмали зуба человека излучением эрбиевого лазера, состоит из внешнего и внутреннего подслоев, отличающихся по структуре и микротвердости, при этом микротвердость внутреннего подслоя примерно в три раза выше микротвердости интактной эмали, а микротвердость внешнего подслоя неравномерна по толщине и ниже микротвердости интактной эмали.

      4. Установлено, что при одинаковой плотности энергии и длительности импульса субмиллисекундного эрбиевого лазера эффективности абляции твердой ткани зуба излучением одномодового лазера и многомодового лазера практически совпадают, импульс отдачи, возникающий при воздействии излучения одномодового лазера на эмаль, на порядок меньше чем импульс отдачи, возникающий при воздействии многомодового лазера, а аспектное соотношение отверстий, формируемых в твердых тканях зуба при воздействии излучения одномодового лазера, может в 20 раз превышать аспектное соотношение отверстий, формируемых в твердых тканях зуба при воздействии излучения многомодового лазера.

      5. Установлено, что воздействие излучения субмиллисекундных эрбиевых лазеров на слой микрочастиц сапфира, размещенных в виде порошка или водной суспензии на поверхности эмали зуба, способно увеличить эффективность ее удаления до 2.5 раз.

      8. Показано, что облучение эмали зуба человека импульсами YAG:Nd

      (^=1.064 мкм) или YAG:Cr;Tm;Ho (^=2.088 мкм) лазеров с плотностью

      энергии в импульсе из диапазона от 10 Дж/см до 200 Дж/см , но ниже порога карбонизации на эмаль-дентинной границе зуба приводит к увеличению микротвердости эмали в 1.5 раза.

      Защищаемые положения

          1. Оптико-физическая модель воздействия лазерного излучения на эмаль зуба, в которой эмаль представлена в виде набора интегрированных друг в друга объемов (сот), содержащих гидроксилапатит и воду в характерном для интактной эмали соотношении 0.89:0.11, позволяет определить глубину метаморфизированного слоя, образующегося у стенки полости, сформированной в эмали под воздействием излучения эрбиевого лазера.

          2. При воздействии излучения эрбиевого лазера на твердые ткани зуба формируются микрочастицы с размером до 200 мкм, обладающие кинетической энергией достаточной для разрушения эмали зуба. Эффективность удаления эмали зуба под воздействием только этих микрочастиц соизмерима с эффективностью удаления эмали зуба под воздействием только падающего на эмаль излучения эрбиевого лазера.

          3. Воздействие субмиллисекундных импульсов лазеров среднего инфракрасного диапазона спектра на порошок или водную суспензию, содержащие микрочастицы сапфира с размером до 200 мкм, приводит к ускорению микрочастиц сапфира до сверхзвуковых скоростей (до 600 м/c), а кинетическая энергия этих микрочастиц достаточна для разрушения твердых тканей зуба.

          4. При воздействии субмиллисекундных импульсов лазеров среднего инфракрасного диапазона спектра на твердые ткани зуба синхронно с пичками лазерного излучения формируется эрозионный факел. Интенсивность и оптический спектр свечения эрозионного факела, полученного при лазерной абляции эмали или дентина зуба, существенно различаются, что позволяет надежно идентифицировать обрабатываемую твердую биоткань.

          5. Воздействие излучения эрбиевого лазера на твердые ткани зуба сопровождается акустическим сигналом, частота которого локализована в диапазоне 10^150 кГц. Параметры акустического сигнала (интенсивность, время задержки возникновения по отношению к началу лазерного импульса, форма огибающей акустического спектра), полученного при лазерной абляции эмали или дентина зуба, существенно различаются, что позволяет надежно идентифицировать обрабатываемую твердую биоткань.

          6. При строго определенном, согласованном во времени периодическом импульсном воздействии на твердую биоткань лазерного излучения,

          водяного и воздушного потоков эффективность удаления твердой биоткани субмиллисекундными импульсами эрбиевого лазера может быть увеличена практически в три раза по сравнению с эффективностью удаления при совместном воздействии на твердую биоткань только лазерного излучения и водяного потока.

          7. Под воздействием одномодовых субмиллисекундных импульсов эрбиевого лазера в твердых тканях зуба формируют микроотверстия с диаметром порядка 100 мкм, аспектным соотношением в эмали порядка 7:1 и в дентине порядка 21:1 при отсутствии карбонизации.

          Практическая ценность результатов работы

                1. Разработан новый метод лазерной обработки твердых биотканей, сочетающий одновременное воздействие лазерного излучения и абразивных микрочастиц, приводящий к существенному увеличению эффективности удаления твердой биоткани (лазерно-абразивный метод).

                2. Разработан новый метод лазерной обработки твердых биотканей, состоящий в согласованном во времени периодическом импульсном воздействии на твердую биоткань лазерного излучения, водяного и воздушного потоков, приводящий к существенному увеличению эффективности удаления твердой биоткани (метод трех импульсов).

                3. Сформулирован алгоритм работы системы обратной связи, анализирующей параметры формируемого при лазерном воздействии на твердую ткань зуба человека акустического сигнала и адаптирующей параметры лазерного излучения под тип обрабатываемой биоткани, использование которого существенно повышает селективность и безопасность лазерной обработки твердых тканей зуба.

                4. Показана возможность адаптивного управления параметрами лазерного излучения на базе анализа спектров свечения эрозионного факела, сопровождающего лазерную абляцию твердых биотканей, использование которого позволит существенно повысить селективность и безопасность лазерной обработки твердой биоткани.

                5. Разработан новый метод обработки зуба человека лазерным излучением, состоящий в формировании на поверхности эмали зуба под воздействием лазерного излучения регулярных текстур, наличие которых повышает адгезионную способность поверхности эмали зуба.

                6. Предложен новый метод управления свойствами эмали с помощью лазерного излучения, направленный на профилактику кариеса и состоящий в воздействии на эмаль зуба импульсного излучения YAG:Nd или YAG:Cr;Tm;Ho лазеров c плотностью энергии ниже порога карбонизации на эмаль-дентинной границе зуба.

                Апробация результатов работы

                Основные результаты работы были представлены и обсуждались на следующих конференциях: Международная конференция "Оптика лазеров" (Санкт-Петербург, Россия, 2000, 2010); International conference EuroBiOs Biomedical Optics'95 (Barcelona, Spain, 1995); International conference BiOs Biomedical Optics'95 (San Francisco, USA, 1995); VIII International Conference Laser Application Engineering, (Pushkin, Russia, 1996); 5th International Congress on Lasers in Dentistry (Jerusalem, Israel, 1996); Международная конференция "Лазеры в медицине'97, '99м (Санкт-Петербург, Россия, 1997, 1999); International conference EuroBiOs Biomedical Optics'98 (Stockholm, Sweden, 1998); International conference BiOs Biomedical Optics'98 (San Jose, USA, 1998); Научная конференция "Лазеры для медицины, биологии и экологии" (Санкт-Петербург, Россия, 1999); International conference BiOs Biomedical Optics'99 (San Jose, USA, 1999); Российская научно-практическая конференция "Оптика и научное приборостроение - 2000" (Санкт-Петербург, Россия, 2000); IX International Conference Laser Assisted Microtechnology (LAM-2000) (Санкт-Петербург, Россия, 2000); International conference EuroBiOs Biomedical Optics'00 (Amsterdam, Netherlands, 2000); Международная конференция Lasers, applications and technologies (LAT-2002, приглашенный доклад) (Moscow, Russia, 2002); 8th International Congress on Lasers in Dentistry (Yokogama, Japan, 2002); International Conference "Fundamentals of Laser Assisted Micro- and Nanotechnologies (FLAMN-2007, 2010)" (Pushkin, Russia, 2007, 2010); Международный симпозиум «Topical Problems of Biophotonics» (Нижний Новгород, Россия, 2007, 2011); International Conference "IADR/AADR/CADR (Miami, USA, 2009); 16th Annual Conference of Academy of Laser Dentistry (Las Vegas, USA, 2009); Международная конференция Saratov Fall Meeting (Саратов, Россия, 2003, 2007, 2009, 2010, 2011). Материалы трудов конференций опубликованы. Результаты работы внедрены на предприятиях ЗАО «УНП Лазерный Центр ИТМО» (Россия), Laser Medical Systems GmbH (Австрия), Palomar Medical Technologies Inc. (США) и Dental Photonics Inc. (США).

                Результаты работы внедрены в учебный процесс СПбГУ ИТМО (Россия) при подготовке магистров, бакалавров и специалистов по программе 200200.68 «Лазерные биомедицинские технологии», а также специалистов по специальности 200201.65 «Лазерная техника и лазерные технологии».

                Публикации.

                По теме диссертации опубликовано 53 работы, из них 25 работ в ведущих рецензируемых научных журналах и изданиях, включенных в перечень ВАК: Оптический журнал, Оптика и спектроскопия, ЖТФ, Письма в ЖТФ,

                Стоматология, Научно-технический вестник Санкт-Петербургского государственного университета информационных технологий, механики и оптики и др., а также публикации в зарубежных изданиях, включенных в систему цитирования Web of Science: Lasers in Surgery and Medicine (ISSN 0196-8092), 3 из этих работ подготовлены и опубликованы без соавторов. 14 работ опубликовано в журнале Proceedings of SPIE, входящем в системы цитирования SCOPUS и Chemical Abstracts. Получено 12 патентов, в том числе 10 международных.

                Личный вклад автора.

                Диссертация написана А.В.Беликовым лично. Все изложенные в диссертации результаты получены автором лично или при его непосредственном участии. Автор осуществлял выбор направлений и постановку задач исследований, проведение расчетов, разработку и создание экспериментальных установок, проведение экспериментов и анализ полученных результатов исследований.

                Структура и объем диссертации.

                Диссертация состоит из введения, пяти глав, заключения и списка цитируемой литературы, включающего 211 ссылок, из них 42 ссылки на работы автора. Работа изложена на 344 страницах, содержит 123 рисунка и 10 таблиц.

                Похожие диссертации на Оптико-физические процессы при воздействии лазерного излучения на твердые биоткани