Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Гидродинамическая модель гравитационного коллапса вращающегося железного ядра массивной звезды Молоканов, Валентин Олегович

Гидродинамическая модель гравитационного коллапса вращающегося железного ядра массивной звезды
<
Гидродинамическая модель гравитационного коллапса вращающегося железного ядра массивной звезды Гидродинамическая модель гравитационного коллапса вращающегося железного ядра массивной звезды Гидродинамическая модель гравитационного коллапса вращающегося железного ядра массивной звезды Гидродинамическая модель гравитационного коллапса вращающегося железного ядра массивной звезды Гидродинамическая модель гравитационного коллапса вращающегося железного ядра массивной звезды
>

Диссертация, - 480 руб., доставка 1-3 часа, с 10-19 (Московское время), кроме воскресенья

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Молоканов, Валентин Олегович. Гидродинамическая модель гравитационного коллапса вращающегося железного ядра массивной звезды : диссертация ... кандидата физико-математических наук : 01.04.02 / Молоканов Валентин Олегович; [Место защиты: Ин-т теорет. и эксперим. физики им. А.И. Алиханова].- Москва, 2010.- 145 с.: ил. РГБ ОД, 61 11-1/409

Введение к работе

Актуальность темы

Гравитационный коллапс — чрезвычайно интересное явление во Вселенной, богатое научными исследованиями и имеющее особую важность для современной науки. Оно представляет собой катастрофически быстрое сжатие массивных звезд под действием собственных сил тяготения. На определенном этапе любая звезда, если в ней, согласно теории эволюции, образовалось железное ядро, переходит в ту стадию, когда уже ее центр не выделяет энергии. Сначала создается инверсия температуры, т.е. температура в центре меньше, чем в окружающих оболочках (водородной, гелиевой, углеродной, кремниевой и т.д.), в которых еще действуют источники энерговыделения. В это время, согласно теореме вириала, которая действует для всех звезд, продолжается постепенное увеличение у звезды плотности. Это приводит к тому, что, в конце концов, давления в центре становится недостаточно, чтобы удержать звезду в гидростатическом равновесии. Такой процесс с какого-то момента приобретает катастрофический характер, т.е. развивается в гидродинамическом времени. Тогда возникает мощная ядерная реакция развала ядер железа на составляющие их нейтроны и альфа-частицы, а потом альфа-частицы постигает та же судьба (они делятся на нуклоны). По существу этот процесс носит характер неустойчивости и называется неустойчивостью звезды по отношению к гравитационному коллапсу. Такое представление об эволюции звезд возникло уже десятки лет назад; нет никакого сомнения, что коллапс является концом жизни массивной звезды.

Итак, процессом гравитационного коллапса заканчивается эволюция звезд с массой более двух солнечных масс: после исчерпания своего ядерного горючего такие звезды теряют механическую устойчивость и начинают сжиматься к центру. Если растущее внутреннее давление останавливает гравитационный коллапс, то центральная область звезды становится сверхплотной нейтронной звездой, что может сопровождаться сбросом оболочки и наблюдаться как вспышка сверхновой звезды. Если же внутреннего давления недостаточно и радиус звезды уменьшается до значения гравитационного радиуса, то результатом коллапса будет формирование черной дыры.

В настоящей диссертации рассматривается вопрос, которым ИТЭФ уже традиционно занимается, — это учет эффектов вращения при коллапсе железных ядер массивных звезд. Трудно себе представить, чтобы звезда перед коллапсом (предсверхновая) не имела какого-либо вращения (причем необязательно твердотельного, может быть, даже и дифференциального вращения). Мы знаем, что даже на главной последовательности звезды имеют очень большие скорости вращения, особенно массивные [1]. Такая ситуация возникает при первичном коллапсе газово-пылевого облака. Поэтому, закладывая в начальные условия железного ядра некоторый эффект вращения, мы имеем принципиальную возможность уже тщательно исследовать результаты на уровне принимаемой модели.

С гравитационным коллапсом связано не менее удивительное явление, наблюдаемое по всем просторам Вселенной, — это вспышки сверхновых. Вспышки сверхновых являются одними из самых мощных источников энергии в природе. Во-первых, все тяжелые элементы в межзвездном пространстве, в том числе и на планетах, были синтезированы в недрах звезд и затем выброшены при взрывах сверхновых. Во-вторых, сверхновая звезда, как правило, имеет блеск, сравнимый с блеском целой галактики. Более того, гравитационный коллапс сопровождается процессом нейтронизации вещества, при котором происходит выброс колоссальной энергии в виде нейтринного излучения, поэтому не менее важен для науки нейтринный блеск коллапсирующей звезды. На сегодняшний день регистрация нейтринного излучения подземными детекторами — единственный объективный способ свидетельствовать о гравитационном коллапсе. Вот почему в данной диссертации мы уделяем большое внимание характеристикам нейтринного излучения коллапсирующего ядра звезды.

Здесь возникает вопрос о нейтринных спектрах сверхновых звезд. Безусловно, вывод нейтринных спектров теоретическим путем послужит дальнейшему совершенствованию системы наблюдений. Знания о нейтринных спектрах также нужны для того, чтобы объяснить эксперименты по измерению нейтринных сигналов коллапсирующих сверхновых.

Еще один ключевой вопрос в современной астрофизике состоит в формировании пульсаров — космических источников импульсного электромагнитного излучения с высокой стабильностью периода. Большинство пульсаров излучают в радиодиапазоне от метровых до сантиметровых волн. Теория отождествляет радиопульсары с быстро вращающимися нейтронными звездами, которые могли образоваться в результате коллапса изначально вращающихся звезд [2]; в частности, теория предсказывает возможность наблюдения пульсара на месте взрыва близкой сверхновой СН 1987А.

Итак, для убедительного сопоставления теории с вышеперечисленными наблюдениями требуются численные расчеты различных теоретических моделей. Поэтому проблема гравитационного коллапса вращающегося ядра звезды является одной из наиболее актуальных для современной науки.

Цель работы

Первичной целью диссертационной работы являлись анализ существующей теории гравитационного коллапса (Глава 1), решение задачи о коллапсе вращающегося ядра звезды в квазиодномерной модели со строгим учетом неравновесного нестационарного нейтринного излучения и кинетики нейтронизации вещества, а также сопоставление результатов с теорией и наблюдениями (Глава 2).

На основании полученных результатов важной последующей целью стало решение квазиодномерной модели в предельном случае прозрачности звезды для нейтринного излучения (Глава 3). Представлялось чрезвычайно важным получить более жесткие спектры нейтринного излучения, чтобы число событий в нейтринном детекторе LSD было более близким к экспериментально наблюденному в первом нейтринном сигнале от СН 1987А. Связанной задачей стал также анализ влияния процесса поглощения нейтринного излучения в веществе (так называемого эффекта депозиции) на характеристики коллапса.

Дополнительный интерес вызвал вопрос влияния эффекта вырождения нейтронной компоненты вещества на нейтринное излучение. Поэтому еще одной целью стало решение квазиодномерной модели с учетом произвольного вырождения нейтронов в уравнении состояния вещества (Глава 4).

Научная новизна

Новизна данной диссертационной работы сводится к следующему.

В рамках квазиодномерной модели реализовано решение уравнений переноса нейтрино одновременно с уравнениями гидродинамики. Неравновесное и нестационарное нейтринное излучение рассчитано по точному аналитическому решению [3], имеющему место для сферически-симметричного случая. Показано, что оптическая толщина звезды может быть недостаточной для применимости приближения нейтринной теплопроводности [4] в случае коллапса вращающейся звезды.

Процесс нейтронизации вещества описан уравнением кинетики нейтронизации вместо условия равновесия бета-процессов, которое из-за весьма малых гидродинамических времен задачи не успевает устанавливаться. Продемонстрировано значительное отставание (в 100 раз) рассчитанного параметра нейтронизации от его значений в приближении кинетического равновесия. Также показано, что степень вырождения электронов чрезвычайно высока в процессе низкоэнтропийного коллапса вращающейся звезды.

Непосредственно из данных численного расчета получены спектры нейтрино и антинейтрино для выходящего нейтринного излучения и оценены числа событий в детекторе LSD для СН 1987А.

По сравнению с предыдущими расчетами квазиодномерной модели [5], [6], [7] учтено произвольное вырождение нейтронов в уравнении состояния вещества. При этом также использованы формулы ядерного статистического равновесия с учетом этого эффекта.

По сравнению с предыдущими расчетами квазиодномерной модели расчеты выполнены до достаточно отдаленных моментов времени, сопоставимых с экспериментальным временем наблюденного нейтринного сигнала от СН 1987А.

Практическая и научная значимость работы

Сформулированная физическая постановка задачи о коллапсе вращающегося железного ядра звезды позволяет исследовать различные стороны задачи с помощью общепринятых методов численных расчетов высокой точности.

Полученные результаты по наблюдательным характеристикам нейтринного излучения, а также их высокая чувствительность к эффекту депозиции придают значимость разработке трехмерной модели коллапса. В диссертации высказывается гипотеза о том, что сам эффект депозиции нейтринного излучения может ослабляться вследствие развития динамической неустойчивости у звезды (см. например [8], [9]), которая является уже трехмерным эффектом.

В рамках квазиодномерной модели также приобретают ценность некоторые дальнейшие разработки, такие как: а) включение модифицированного урка-процесса [10] в рассмотрение генерации и депозиции нейтринного излучения; б) учет ядер других сортов, помимо рассмотренных (p, n, 56Fe, 4He), не только в качестве составляющих барионную компоненту вещества, но также и в генерации нейтринного излучения; в) решение квазиодномерной модели для случая промежуточных угловых скоростей с рассмотрением генерации нейтринного излучения не только за счет бета-процессов, но также и путем образования пар нейтрино-антинейтрино на аккреционном слое.

Диссертация является важным этапом подготовки к решению трехмерной задачи коллапса. Результаты диссертации являются полезными данными для реализации трехмерной модели.

Достоверность полученных результатов

Все положения и выводы диссертации обоснованы, достоверность результатов обеспечивается строгостью используемых методов исследования и адекватностью рассмотренных физических моделей.

Личный вклад автора

Все результаты, описанные в диссертации, получены лично автором под руководством и в соавторстве с научным руководителем.

Апробация результатов

Результаты, вошедшие в диссертацию, докладывались автором и обсуждались на следующих научных мероприятиях:

  1. Семинарах ИТЭФ в 2008, 2009, 2010 гг.

  2. Всероссийской конференции «Астрофизика высоких энергий сегодня и завтра», Москва, 21 – 24 декабря 2009.

  3. Семинаре Г.Т. Зацепина, Москва, 12 февраля 2010.

Объем и структура диссертации