Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Метод противодействия утечке информации по скрытым каналам, основанным на изменении длин передаваемых пакетов Когос Константин Григорьевич

Метод противодействия утечке информации по скрытым каналам, основанным на изменении длин передаваемых пакетов
<
Метод противодействия утечке информации по скрытым каналам, основанным на изменении длин передаваемых пакетов Метод противодействия утечке информации по скрытым каналам, основанным на изменении длин передаваемых пакетов Метод противодействия утечке информации по скрытым каналам, основанным на изменении длин передаваемых пакетов Метод противодействия утечке информации по скрытым каналам, основанным на изменении длин передаваемых пакетов Метод противодействия утечке информации по скрытым каналам, основанным на изменении длин передаваемых пакетов Метод противодействия утечке информации по скрытым каналам, основанным на изменении длин передаваемых пакетов Метод противодействия утечке информации по скрытым каналам, основанным на изменении длин передаваемых пакетов Метод противодействия утечке информации по скрытым каналам, основанным на изменении длин передаваемых пакетов Метод противодействия утечке информации по скрытым каналам, основанным на изменении длин передаваемых пакетов Метод противодействия утечке информации по скрытым каналам, основанным на изменении длин передаваемых пакетов Метод противодействия утечке информации по скрытым каналам, основанным на изменении длин передаваемых пакетов Метод противодействия утечке информации по скрытым каналам, основанным на изменении длин передаваемых пакетов Метод противодействия утечке информации по скрытым каналам, основанным на изменении длин передаваемых пакетов Метод противодействия утечке информации по скрытым каналам, основанным на изменении длин передаваемых пакетов Метод противодействия утечке информации по скрытым каналам, основанным на изменении длин передаваемых пакетов
>

Диссертация - 480 руб., доставка 10 минут, круглосуточно, без выходных и праздников

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Когос Константин Григорьевич. Метод противодействия утечке информации по скрытым каналам, основанным на изменении длин передаваемых пакетов: диссертация ... кандидата технических наук: 05.13.19 / Когос Константин Григорьевич;[Место защиты: Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский ядерный университет "МИФИ"].- Москва, 2015.- 116 с.

Содержание к диссертации

Введение

1 Исследование способов построения и противодействия утечке информации по скрытым каналам в сетях пакетной передачи данных 11

1.1 Подходы к определению скрытых каналов 11

1.2 Скрытые каналы в сетях пакетной передачи данных 19

1.3 Противодействие утечке информации по скрытым каналам

1.3.1 Идентификация скрытых каналов 24

1.3.2 Анализ скрытых каналов 30

1.3.3 Ограничение пропускной способности и подавление скрытых каналов 33

1.3.4 Обнаружение скрытых каналов 37

1.3.5 Противодействие утечке информации по сетевым скрытым каналам 39

1.4 Выводы 41

2 Методика анализа и оценки пропускной способности скрытых каналов при введении методов ограничения пропускной способности 43

2.1 Оценка максимальной пропускной способности скрытого канала при поточном шифровании трафика 43

2.2 Оценка максимальной пропускной способности скрытого канала при блочном шифровании трафика 47

2.3 Методика анализа и оценки пропускной способности скрытых каналов в условиях противодействия 51

2.4 Выводы 57

3 Метод ограничения пропускной способности скрытых каналов путем увеличения длин передаваемых пакетов 58

3.1 Способ противодействия утечке информации путем случайного увеличения длин передаваемых пакетов 58

3.2 Оценка пропускной способности скрытого канала в условиях противодействия 59

3.3 Построение скрытого канала, при котором длины передаваемых пакетов принимают равномерно распределенные значения 62

3.4 Оценка пропускной способности скрытого канала, при котором длины передаваемых пакетов принимают равномерно распределенные значения 67

3.5 Оценка пропускной способности скрытого канала с заданным уровнем ошибок, при котором длины передаваемых пакетов принимают равномерно распределенные значения 68

3.6 Выводы 70

4 Метод ограничения пропускной способности скрытых каналов путем генерации фиктивного трафика 71

4.1 Способ противодействия утечке информации путем генерации фиктивного трафика 71

4.2 Оценка пропускной способности скрытого канала при детерминированной генерации фиктивного трафика 73

4.3 Оценка пропускной способности скрытого канала при случайной генерации фиктивного трафика 79

4.4 Выводы 86

5 Применение разработанных методов ограничения пропускной способности скрытых каналов 87

5.1 Рекомендации по выбору значения параметра метода противодействия путем случайного увеличения длин передаваемых пакетов 88

5.2 Рекомендации по выбору значений параметров метода противодействия путем генерации фиктивного трафика

5.3 Внедрение результатов диссертационной работы 95

5.4 Выводы 97

Заключение 98

Список сокращений и условных обозначений 100

Список литературы 101

Введение к работе

Актуальность работы. На современном этапе развития информационных технологий и массового внедрения средств вычислительной техники в различные области и сферы деятельности человека постоянно возрастает актуальность проблем информационной безопасности, от качества решения которых во многом зависит успешное функционирование государственных и коммерческих организаций.

В настоящее время и на прогнозируемую перспективу сохранится тенденция широкого использования сетей пакетной передачи данных, что, в свою очередь, делает весьма значимой угрозу негласного использования нарушителем особенностей протокола IP для скрытой передачи информации ограниченного доступа по каналам связи, выходящим за пределы объектов информатизации, на которых она обрабатывается.

Необходимость создания и постоянного совершенствования способов противодействия утечке информации по так называемым скрытым каналам обусловлена и тем, что такие каналы могут быть построены в условиях применения традиционных способов сетевой защиты, заключающихся в межсетевом экранировании, туннелировании трафика и др. Исследования показывают, что данная угроза сохраняется даже при передаче информации в зашифрованном виде. Согласно отечественному стандарту ГОСТ Р 53113.2-2009, информация, связанная с размерами пакетов и временными интервалами между их появлением, может быть использована для организации скрытого канала в условиях туннелирования и шифрования трафика. Вопросами анализа скрытых каналов занимаются такие отечественные и зарубежные ученые, как Аникеев М.В., Грушо А.А., Матвеев С.В., Тимонина Е.Е., Зандер С., Кабук С., Кеммерер Р.А., Лэмпсон Б.В., Миллен Ж.К. и другие.

Значимость диссертационной работы подтверждена Перечнем приоритетных проблем научных исследований в области обеспечения информационной безопасности Российской Федерации (пункты 45, 48, 74), наличием в стандарте ГОСТ Р ИСО/МЭК 15408-2-2013 класса функциональных требований, касающихся ограничения и подавления скрытых каналов, а также регламентируемым ГОСТ Р 53113 подходом к противодействию утечке информации по скрытым каналам.

Особую актуальность рассматриваемой угрозе, связанной с утечкой информации по скрытым каналам, придают известные результаты исследований, согласно которым противник, который знает схему контроля в системе защиты, может создать невидимый для контролирующего субъекта скрытый канал как для управления программно-аппаратным агентом в компьютерной системе, так и для общения программно-аппаратных агентов в открытой среде между собой.

Метод, позволяющий гарантировать отсутствие в системе сетевых скрытых каналов,
заключается в построении и поддержании замкнутых доверенных программно-аппаратных
сред. Внедрение агента нарушителя в такие системы должно быть невозможно на любой стадии
их жизненного цикла. При этом, ввиду повсеместного использования импортного оборудования
и программного обеспечения, такой метод зачастую практически не реализуем, так как агент
нарушителя может быть внедрен как на оконечных, так и на промежуточных узлах на пути
следования трафика. Передача данных по каналам связи в зашифрованном виде не решает
проблему утечки информации по некоторым классам сетевых скрытых каналов. Вместе с тем,
исследование даже известного кода на предмет обнаружения программных закладок
представляет собой трудоемкую научно-техническую задачу и становится практически
невозможным при частом внесении изменений в программное обеспечение. Таким образом,
реализация рассмотренного подхода, позволяющего предотвратить утечку информации по
сетевым скрытым каналам, является нетривиальной задачей и не в любой системе может быть
доведена до практического исполнения. Другой способ исключения условий

функционирования сетевых скрытых каналов заключается в нормализации параметров пакетной передачи данных, то есть, в отправке пакетов фиксированной длины с фиксированными заголовками через равные промежутки времени, что приводит к существенному снижению эффективности использования пропускной способности каналов связи, увеличению стоимости их применения.

В силу отмеченных причин, в соответствии с ГОСТ Р 53113.1-2008, в случаях, когда регулирующие органы или собственник информации допускают возможность утечки некоторых объемов данных, рекомендуется использовать методы ограничения пропускной способности скрытых каналов. Такие методы применимы, если пропускная способность скрытого канала может быть ограничена до величины, меньшей установленного допустимого значения. Целесообразность использования указанных методов подтверждена данными компании IBM, согласно которым допустимо функционирование скрытых каналов с пропускной способностью до 0,1 бит/с, но в некоторых случаях возможно наличие потенциальных скрытых каналов с пропускной способностью до 100 бит/с. Применение рассмотренных методов на практике, в отличие от методов подавления скрытых каналов, позволяет обеспечивать высокую эффективную пропускную способность канала связи, гибко управлять эксплуатационными и стоимостными характеристиками телекоммуникационных систем. Данный подход позволяет гарантированно ограничить пропускную способность широкого класса скрытых каналов, независимо от способа их организации. Для построения таких методов необходимо получить и исследовать оценки пропускной способности скрытых каналов, функционирующих в условиях отсутствия и применения средств противодействия.

Кроме того, оценка пропускной способности скрытых каналов и оценка опасности, которую несет их скрытое функционирование, является одним из этапов по определению степени опасности скрытого канала в соответствии с ГОСТ Р 53113.1-2008.

В настоящей работе исследованы скрытые каналы, основанные на изменении длин передаваемых пакетов, так как, с одной стороны, такие каналы могут быть построены в условиях шифрования трафика, с другой стороны, их пропускная способность может быть значительно выше, чем пропускная способность каналов по времени. Несмотря на то, что известны способы реализации анализируемых методов противодействия утечке информации по скрытым каналам путем увеличения длин пакетов и генерации фиктивного трафика, отсутствуют рекомендации по выбору значений параметров данных методов, а также неизвестны оценки остаточной пропускной способности скрытых каналов в условиях противодействия. Поэтому настоящая работа, посвященная разработке и исследованию методов противодействия утечки информации по скрытым каналам, основанным на изменении длин передаваемых пакетов, является актуальной и представляет как научный, так и практический интерес.

Целью диссертационной работы является повышение защищенности информационных систем путем разработки метода ограничения пропускной способности скрытых каналов, основанных на изменении длин пакетов.

В соответствии с поставленной целью в диссертационной работе решаются следующие задачи:

анализ существующих способов построения скрытых каналов в сетях пакетной передачи данных и способов противодействия им;

оценка максимальной пропускной способности скрытых каналов, основанных на изменении длин пакетов, при поточном и блочном шифровании трафика;

разработка методики анализа и оценки пропускной способности скрытых каналов при применении методов противодействия;

разработка и оценка количественных характеристик методов противодействия утечке информации по скрытым каналам, основанным на изменении длин пакетов, путем случайного увеличения длин пакетов, детерминированной и случайной генерации фиктивного трафика.

Основными методами исследования, используемыми в работе, являются методы теории информации, теории вероятности, дифференциального и интегрального исчисления.

Научная новизна диссертационной работы заключается в следующем.

1. Предложена методика анализа и оценки пропускной способности скрытых каналов с использованием методов теории информации в условиях их ограничения, позволяющая, в

отличие от существующих подходов, исследовать зависимость характеристик скрытых каналов от параметров способа противодействия.

  1. Разработаны методы противодействия утечке информации по скрытым каналам, основанным на изменении длин передаваемых пакетов, путем их случайного увеличения, детерминированной и случайной генерации фиктивного трафика, отличающиеся от известных тем, что они применимы в случае, когда допускается наличие в информационной системе скрытого канала с приемлемым значением пропускной способности.

  2. Впервые получены оценки пропускной способности скрытых каналов, основанных на изменении длин передаваемых пакетов, в отсутствие противодействия и в условиях предотвращения утечки информации.

Теоретическую значимость представляют:

методы противодействия утечке информации по скрытым каналам, основанным на изменении длин пакетов, путем случайного увеличения длин пакетов, подлежащих отправке, детерминированной и случайной генерации фиктивного трафика;

методика анализа и оценки пропускной способности скрытых каналов при применении методов ограничения пропускной способности;

формулы для расчета значений параметров предложенных методов противодействия, при которых пропускная способность скрытого канала не превышает заданного значения.

Практическую значимость представляют:

методы ограничения пропускной способности скрытых каналов, основанных на изменении длин пакетов, путем случайного увеличения длин пакетов, подлежащих отправке, детерминированной и случайной генерации фиктивного трафика;

оценка максимальной пропускной способности скрытого канала, основанного на изменении длин передаваемых пакетов, при отсутствии противодействия в условиях поточного и блочного шифрования трафика;

методика анализа и оценки пропускной способности скрытого канала в условиях введения методов противодействия;

программные средства для расчета значений параметров предложенных методов противодействия, позволяющих понизить остаточную пропускную способность скрытого канала до заданного значения.

Внедрение результатов исследований. Практическая значимость результатов

диссертации подтверждена тремя актами о внедрении. Разработанные автором методы противодействия утечке информации по скрытым каналам внедрены в деятельность ЗАО «Голлард» по модернизации программного комплекса «Сито», предназначенного для

подавления функционирования скрытых логических каналов. Результаты диссертационной работы внедрены также в научно-исследовательские и опытно-конструкторские работы, выполняемые ООО «Защита информации». Теоретические результаты диссертации внедрены в образовательный процесс кафедры «Криптология и дискретная математика» НИЯУ МИФИ в рамках учебного курса «Криптографические протоколы и стандарты».

Публикации и апробация работы. Результаты диссертационной работы изложены в 15 опубликованных и приравненных к ним работах, в том числе в пяти научных статьях в изданиях, включенных в Перечень ведущих рецензируемых научных журналов, четырех научных статьях в журналах, индексируемых международной системой научного цитирования Scopus, из них одна в журнале, индексируемом международной системой научного цитирования Web of Science, также имеются два свидетельства о государственной регистрации программ для ЭВМ. Результаты работы докладывались на конференциях и семинарах различного уровня, в том числе на:

23-й и 24-й научно-технических конференциях «Методы и технические средства обеспечения безопасности информации» (Санкт-Петербург, 2014, 2015 гг.);

ХХII Всероссийской научно-практической конференции «Проблемы информационной безопасности в системе высшей школы» (Москва, 2015 г.);

научно-практическом семинаре в Центре специальных разработок Министерства обороны Российской Федерации (Москва, 2015 г.);

14-й Всероссийской конференции «Сибирская научная школа-семинар с международным участием «Компьютерная безопасность и криптография» SIBECRYPT’15 (Новосибирск, 2015 г.);

The International Conference on Open and Big Data OBD 2015 (Рим, Италия, 2015 г.);

The 5th International Conference on IT Convergence and Security ICITCS 2015 (Куала Лумпур, Малайзия, 2015 г.);

The 2nd Workshop on Emerging Aspects in Information Security EAIS’15 (Лодзь, Польша, 2015 г.);

The 8th International Conference on Security of Information and Networks SIN 2015 (Сочи, 2015 г.).

Основные положения, выносимые на защиту:

оценка максимальной пропускной способности скрытых каналов, основанных на изменении длин пакетов, при поточном и блочном шифровании трафика;

методика анализа и оценки пропускной способности скрытых каналов при введении методов ограничения пропускной способности;

методы противодействия утечке информации по скрытым каналам, основанным на изменении длин пакетов, путем случайного увеличения длин передаваемых пакетов, детерминированной и случайной генерации фиктивного трафика;

выражения для расчета значений параметров предложенных методов противодействия утечке информации по скрытым каналам и рекомендации по их выбору.

Структура и объем работы. Диссертация состоит из введения, пяти разделов, заключения, списка литературы, включающего 148 наименований, и двух приложений. Диссертация изложена на 114 страницах с 27 рисунками и 12 таблицами, не включая приложения.

Противодействие утечке информации по скрытым каналам

Схема непрямого скрытого канала по памяти Данные могут также быть скрыты в заполнении кадра или пакета незначащей информацией, если длина кадра или пакета должна быть не меньше определенного значения. Например, такая скрытая передача данных возможна в случае использования протокола Ethernet, в котором кадры должны быть заполнены до минимальной длины 60 байт. Если условия использования протокола не предусматривают конкретные значения для байтов заполнения, то могут быть использованы любые данные [33, 49]. Аналогичным образом, скрытая передача информации может быть организована для протоколов IPv4, IPv6 и TCP [50– 52].

Изменение адресов получателей в последовательно передаваемых пакетах для построения скрытого канала предложено авторами [53–55]. Сумму всех битов передаваемого пакета предложено использовать для скрытой передачи информации автором [56]. Информация может быть передана путем изменения порядка передачи N пакетов через X потоков протокола TCP [57, 58]. Если представить, что пакеты — это шары, а потоки — урны, то представленный скрытый канал напрямую связан с задачей размещения N шаров по X урнам. Преднамеренное удаление отправителем некоторых пакетов, подлежащих отправке, применено для построения скрытого канала с низкой пропускной способностью в [59].

Скрытые статистические каналы детально проанализированы авторами [55, 60-62]. Примером скрытого статистического канала может являться передача некоторого маловероятного пакета в заранее заданный злоумышленником интервал времени.

Скрытая информация может быть передана путем изменения скорости передачи пакетов [29]. Пропускная способность такого скрытого канала равна log2r бит в течение одного

временного интервала, где г — количество различных скоростей передачи пакетов. Бинарный скрытый канал по скорости передачи пакетов исследован авторами [53, 63].

Впервые использовать длины межпакетных интервалов для организации скрытых каналов было предложено в [54]. Авторами [64] предложена технология JitterBug для построения бинарных скрытых каналов, основанных на изменении длин межпакетных интервалов. Другая схема скрытой передачи информации с использованием длин межпакетных интервалов исследована в [65]. Авторами даны рекомендации по выбору значений параметров кодирования, при которых пропускная способность скрытого канала принимает наибольшее значение. В [66] предложен скрытый канал, основанный на изменении длин межпакетных интервалов, вероятность обнаружения которого приблизительно равна 9%, вероятность ошибки второго рода не превышает 0,5%.

Авторами [32] предложено переупорядочивание последовательности пакетов, подлежащих отправке, на стороне отправителя для построения скрытого канала. Так как существует п! способов переупорядочить п пакетов, то пропускная способность такого канала равна (log2 п!) / п бит на пакет.

В скрытом канале, описанном автором [67], отправитель посылает большое количество запросов на сервер, чтобы передать «1», либо бездействует, чтобы передать «0». Получатель по истечении каждого временного интервала посылает запросы на сервер и измеряет время ответного сигнала для восстановления переданной информации.

Авторами [68, 69] разработан скрытый канал, основанный на том, что температура процессора прямо пропорциональна количеству обработанных пакетов за единицу времени, а отклонения системных часов зависят от температуры процессора. В течение каждого временного интервала скрытый отправитель либо отправляет пакеты на промежуточный узел, либо бездействует. Скрытый получатель оценивает отклонение системных часов промежуточного узла, анализируя значения меток времени в полученных от него пакетах, например, используя поля «Метка времени» заголовков полученных пакетов протокола TCP. В ряде работ [63, 70, 71] предложены схемы встраивания в длины межпакетных интервалов отличительной информации для отслеживания трафика, проходящего через прокси-серверы, анонимные сети.

Впервые изменять длину кадров канального уровня для скрытой передачи информации предложено авторами [53, 54]: отправителю и получателю известно правило, согласно которому каждому байту скрытого сообщения соответствует определенная длина кадра. Таким образом, требуется 256 различных длин кадров для описания всевозможных значений байтов передаваемого сообщения. Таким скрытые каналы требуют особого внимания, так как далее показано, что их пропускная способность может превышать 1% и 0,1% пропускной способности канала связи при использовании протокола сетевого уровня IPv4 и IPv6 соответственно.

Авторами [72] предложен скрытый канал, в котором отправитель и получатель разделяют периодически обновляемую матрицу, элементы которой — уникальные неупорядоченные длины пакетов. Отправитель по битам скрытно передаваемого сообщения определяет строку матрицы и случайным образом выбирает длину пакета из данной строки, получатель — находит длину принятого пакета в матрице и по номеру строки восстанавливает биты переданного сообщения.

Предложенная в [72] схема усовершенствована авторами [73]: перед началом скрытой передачи информации отправитель и получатель формируют динамически обновляемый справочник длин пакетов, фиксируя длины пакетов трафика, характерного для отсутствия скрытого канала. Для скрытой передачи сообщения отправитель посылает пакет, длина которого выбрана из справочника по алгоритму, известному отправителю и получателю. Длина следующего пакета равна сумме длины предыдущего пакета и числа, соответствующего битам скрытно передаваемого сообщения. В [74] данная схема улучшена путем существенного понижения емкостной и временной сложности декодирования, так как получатель не хранит весь справочник целиком. Авторами [75, 76] предложено совместное использование длин и информационного наполнения пакетов для построения скрытого канала с высокой пропускной способностью.

Представленные схемы скрытой передачи информации, использующие изменение длин пакетов, являются, с одной стороны, сложно обнаруживаемыми, с другой стороны, могут иметь достаточно высокую пропускную способность в сравнении со скрытыми каналами по времени. Это обусловлено тем, что скрытые каналы по времени являются каналами с шумом, поскольку время следования пакета — случайная величина, а также из-за того, что вероятность потери пакетов отлична от нуля.

Оценка максимальной пропускной способности скрытого канала при блочном шифровании трафика

Шифрование трафика — традиционный способ защиты передаваемой по сети информации ограниченного доступа, однако скрытые каналы, основанные на изменении длин пакетов, исследуемые в настоящей работе, могут быть построены в условиях шифрования трафика [1]. Как правило, ввиду высокого объема шифрованных данных, а также необходимости поддержки высокой скорости зашифрования и расшифрования, для обеспечения конфиденциальности передаваемых данных применяют симметричные алгоритмы шифрования. По принципу обработки информации различают поточные и блочные симметричные алгоритмы шифрования [142-144]. Данный подраздел посвящен оценке максимальной пропускной способности скрытых каналов, основанных на изменении длин передаваемых пакетов, при поточном шифровании трафика. Вопросы применения методов поточного шифрования для защиты трафика исследовали, например, авторы [145].

При использовании поточных алгоритмов шифрования длина сообщения не изменяется, поэтому для исследования выбран скрытый канал, построенный следующим образом. Пусть длины пакетов принимают значения на множестве Nt +L \Nj ч, фикс, LGN. Тогда наибольшую пропускную способность имеет скрытый канал, в котором для передачи символа «/ » отправитель посылает пакет длины 1фикс+К г є „-і U{0}, neN — параметр скрытого канала, Nx — множество натуральных чисел от 1 до х. Для оценки пропускной способности скрытого канала v здесь и далее выбран метод, основанный на оценке взаимной информации случайных величин X, 7, описывающих входные и выходные характеристики скрытого канала соответственно: H(Y\X) = - Y, P«U) E A««(/Wlo82A«(/ b ) условная энтропия случайной величины 7 относительно случайной величины X, pex(i) — вероятность отправки символа «/ », Реьа(і) — вероятность распознавания получателем символа «/ », рвЬа(і\І) — условная вероятность распознавания получателем символа «/ » при отправке символа «/ ».

При равновероятном выборе передаваемых по скрытому каналу символов энтропия случайной величины 7 определяется значением параметра скрытого канала п и равна

Очевидно, при увеличении значения п увеличивается как средняя длина передаваемых пакетов, так и количество битов, которое несет передача одного пакета по скрытому каналу. Среднее время т передачи пакета определяется выражением: что достигается при средней длине передаваемых пакетов, равной . Таким образом, пропускная способность v скрытого канала определяется следующим

Для нахождения значения параметра скрытого канала п как функции от параметра метода противодействия а, при котором выражение принимает наибольшее значение, предлагается перейти от дискретной переменной п к непрерывной переменной n, определенной на полуинтервале ll,+oo). Функция от переменной n определена и непрерывна на данном множестве, что позволяет найти экстремум путем дифференцирования данной функции. Производная от функции v ; по переменной n определяется следующим

Заметим, что параметр скрытого канала n принимает целочисленные значения, поэтому фактическое значение параметра скрытого канала n0 необходимо выбирать следующим образом:

Как правило, lфикс определяет сумму длин заголовков сетевого и канального уровней модели взаимодействия открытых систем. Так, например, при использовании IPv4 в качестве протокола сетевого уровня сумма длин заголовков сетевого и канального уровней принимает значение не менее 34 байт, если технология канального уровня — Ethernet. Аналогичная величина при использовании протокола IPv6 равна 54 байтам. Тогда, как видно из таблицы 8, при поточном шифровании трафика при использовании протокола IPv4 пропускная способность скрытого канала максимальна при и=138 и достигает примерно 0,021/?, при использовании протокола IPv6 пропускная способность скрытого канала максимальна при п=201 и достигает примерно 0,014/?, где /? — пропускная способность канала связи. Таблица 8 — Пропускная способность скрытых каналов при поточном шифровании трафика

Данные результаты подтверждают актуальность исследования методов противодействия утечке информации по скрытым каналам, так как показывают, что при пропускной способности канала связи 1 Гбит/с может быть построен скрытый канал с пропускной способностью более 10 Мбит/с.

При блочном шифровании данных открытый текст разбивается на блоки одинакового размера, определяемого алгоритмом шифрования, которые зашифровываются независимо с помощью подстановки шифра. Расшифрование происходит аналогично. Таким образом, если 1Ш — длина блока, то открытый текст перед началом зашифрования должен иметь длину, кратную 1Ш. Способы дополнения открытого текста до необходимой длины описаны, например, в [143]. Поскольку новый отечественный стандарт на алгоритм шифрования [146] является симметричным блочным шифром с размерами блоков 64 и 128 бит, то полученные далее результаты применимы и в случае шифрования канала связи с использованием указанного алгоритма. Если открытый текст имеет длину /0, то после зашифрования длина шифрованного

Так как при таком способе построения скрытого канала увеличение длин пакетов до значений, кратных 1Ш, не приводит к ошибкам, то H(Y\X) = 0. Очевидно, при росте значения п увеличивается как средняя длина передаваемых пакетов, так и количество битов, которое несет передача одного пакета по скрытому каналу. Тогда среднее время т передачи пакета определяется выражением:

Построение скрытого канала, при котором длины передаваемых пакетов принимают равномерно распределенные значения

По рассуждениям, приведенным выше, выражение / (&) принимает наибольшее значение при выборе параметра Ь, равным единице. При таком выборе значения параметра скрытого канала Ъ скрытый канал построен следующим образом: для передачи символа «/ » отправитель посылает пакет длины 1фиКс+К /є-Л U{0}, п — параметр скрытого канала. В

данном случае введение противодействия приводит к возникновению ошибок, причем вероятность верного распознавания получателем переданного символа равна . а + \ При таком выборе значения параметра скрытого канала Ъ условные вероятности распознавания получателем переданного символа принимают следующие значения:

Параметр скрытого канала n принимает целочисленные значения, поэтому фактическое значение параметра скрытого канала n0 необходимо выбирать следующим образом:

Таким образом, в данном подразделе оценена остаточная пропускная способность скрытого канала, основанного на изменении длин пакетов, при случайном увеличении длин пакетов, подлежащих отправке. Необходимое условие построения исследованного скрытого канала — равномерное распределение на множестве длин передаваемых пакетов. Выбрана наилучшая, с точки зрения значения остаточной пропускной способности, схема построения скрытого канала. Однако уровень ошибок при передаче данных по построенному скрытому каналу равен

При наличии допустимого уровня ошибок параметры скрытого канала необходимо выбирать иным образом, что приведет к понижению его пропускной способности. В следующем подразделе исследована остаточная пропускная способность скрытого канала при наличии допустимого уровня ошибок при передаче данных по скрытому каналу и равномерном распределении на множестве длин передаваемых пакетов.

Оценка пропускной способности скрытого канала с заданным уровнем ошибок, при котором длины передаваемых пакетов принимают равномерно распределенные значения

В предыдущем подразделе дана оценка максимальной пропускной способности скрытого канала, при котором длины передаваемых пакетов равномерно распределены на некотором множестве, которая достигается при значении параметра скрытого канала Ь, равного единице. Однако при таком способе построения скрытого канала вероятность верного распознавания переданного символа составляет лишь . Уровень ошибок может быть важным параметром, так как использование скрытых каналов зачастую приводит к утечке критической информации, такой как криптографические ключи, пароли и так далее. Пусть задано значение р — допустимого уровня ошибок при передаче данных по скрытому каналу. Тогда значение параметра скрытого канала Ъ следует выбирать равным

Таким образом, в настоящем подразделе исследован скрытый канал, при построении которого длины передаваемых пакетов принимают равномерно распределенные значения, а уровень ошибок не превышает заданной величины. Выбрана наилучшая, с точки зрения значения остаточной пропускной способности скрытого канала, схема кодирования с учетом предъявляемых требований. Оценена остаточная пропускная способность скрытого канала в условиях противодействия.

В данном разделе разработан метод противодействия утечке информации по скрытым каналам в сетях пакетной передачи данных путем увеличения длины каждого пакета случайным образом. При известной схеме реализации данного метода противодействия нерешенной задачей оставалась оценка остаточной пропускной способности скрытого канала при введении противодействия. Увеличение длин пакетов не приводит к рассинхронизации отправителя и получателя, однако скрытые каналы, устойчивые к данному методу противодействия, должны быть построены специальным образом, предложенным в работе.

Дана оценка максимальной пропускной способности скрытого канала, основанного на изменении длин пакетов, при случайном увеличении длин пакетов, подлежащих отправке. Особое внимание уделено пропускной способности скрытых каналов, при которых длины передаваемых пакетов принимают равномерно распределенные значения, уровню ошибок при передаче данных. Полученные результаты позволяют применять предложенный метод противодействия путем случайного увеличения длин пакетов, подлежащих отправке, при наличии допустимой пропускной способности скрытого канала, минимизировав дополнительную нагрузку на канал связи. 4 Метод ограничения пропускной способности скрытых каналов путем генерации фиктивного трафика

Данный раздел посвящен разработке и исследованию метода противодействия утечке информации по скрытым каналам путем генерации фиктивного трафика. Предложено два способа генерации фиктивного трафика: детерминированным и случайным образом. Для обоих случаев получены выражения для оценки остаточной пропускной способности бинарного скрытого канали при синхронизации путем отправки пакетов специального вида.

При детерминированной генерации фиктивного трафика после передачи k пакетов с информационным наполнением отправляется фиктивный пакет случайной длины, k — параметр метода противодействия, отвечающий за частоту отправки фиктивных пакетов. Эффективная пропускная способность канала связи при введении данного метода противодействия равна

Оценка пропускной способности скрытого канала при случайной генерации фиктивного трафика

Ввиду сложности аналитических зависимостей, связывающих значения параметров скрытого канала и метода противодействия, лишь в некоторых случаях возможно получение формул для оценки значения параметра метода противодействия, в иных случаях необходимо воспользоваться расчетными данными, методами визуализации либо иными подходами, в зависимости от исследуемого метода противодействия и типа скрытых каналов.

В настоящем разделе даны рекомендации по выбору значений параметров разработанных методов утечке информации ограниченного доступа по скрытым каналам, основанным на изменении длин передаваемых пакетов. Ввиду того, что в ряде случаев определять значения параметров разработанных методов противодействия для ограничения пропускной способности скрытого канала необходимо расчетным способом с использованием сложных аналитических зависимостей, реализованы программные средства по расчету необходимых значений параметров предложенных методов противодействия, позволяющих предотвратить утечку информации ограниченного доступа, понизив дополнительную нагрузку на канал связи. Получены два свидетельства о государственной регистрации программ для ЭВМ [147, 148], представленные в Приложениях 1, 2, которые позволяют автоматизировать выбор значений параметров методов противодействия путем случайного увеличения длин пакетов и генерации фиктивного трафика соответственно.

Рекомендации по выбору значения параметра метода противодействия путем случайного увеличения длин передаваемых пакетов

Рассмотрим метод противодействия утечке информации по скрытым каналам, основанным на изменении длин передаваемых пакетов, путем их увеличения случайным образом, предложенный в третьем разделе диссертации. Обобщая полученные зависимости, получаем три случая, для которых определена пропускная способность скрытых каналов в условиях противодействия: - для канала, имеющего наибольшую пропускную способность при введении противодействия (K1): - для канала, имеющего наибольшую пропускную способность при введении противодействия и условии, что длины передаваемых пакетов принимают равномерно распределенные значения (K2): (2L+a-l - для канала, имеющего наибольшую пропускную способность при введении противодействии, и условиях, что длины передаваемых пакетов принимают равномерно распределенные значения и уровень ошибок не превышает заданного значения (K3): +

Значения параметров метода противодействия путем случайного увеличения длин передаваемых пакетов для ограничения пропускной способности данных скрытых каналов предлагается определять расчетным способом. В таблице 12 представлена зависимость между значениями параметров скрытого канала, пропускной способности скрытого канала и параметра метода противодействия.

В некоторых приложениях представляет интерес случай, когда длины передаваемых пакетов принимают значения на заданном множестве. Пусть при построении скрытого канала длины передаваемых пакетов равномерно распределены на множестве N, ,,_, \N, _,. В 1фшс+- 1 условиях противодействия скрытый канал следует организовать следующим образом: для передачи символа «/ » отправитель посылает пакет длины /єЖ, Z GJV, U{0), где Wt =Nt +(;+1fe_1 \ Nj +й_1, b — параметр скрытого канала, bL. Из результатов, полученных в третьем разделе диссертации, следует, что пропускная способность v скрытого канала, построенного таким образом, максимальна при Ъ=1 и определяется следующим выражением: Пусть задано значение допустимой пропускной способности скрытого канала, такое что функционирование скрытых каналов с меньшей пропускной способностью считается неопасным. Пусть сс0 — значение параметра а , при котором выполнено равенство: Отсюда следует, что выполнено равенство: - = -Ыфикс+Ь-1 + а0). (98) После преобразования получаем: v0(a0+l)ln2 VoK27 n2 v Zln2

Таким образом, получена формула для расчета необходимого значения параметра метода противодействия, при котором пропускная способность построенного скрытого канала не превышает заданного значения. Однако при таком способе организации скрытого канала то есть в вероятность верного распознавания переданного символа составляет лишь а + 1 канал вносятся ошибки. Уровень ошибок является важным параметром, так как использование скрытых каналов зачастую приводит к утечке критической информации, такой как криптографические ключи, пароли и так далее. Пусть задано значение рош — допустимого уровня ошибок при передаче данных по скрытому каналу. Тогда из результатов, полученных в третьем разделе диссертации, следует, что значение параметра скрытого канала Ъ следует выбирать равным

В настоящем разделе представлены рекомендации по выбору параметров предложенных методов противодействия утечке информации по скрытым каналам. Ввиду того, что в ряде случаев определять значения параметров разработанных методов противодействия для ограничения пропускной способности скрытого канала необходимо расчетным способом с использованием сложных аналитических зависимостей, реализованы программные средства по расчету необходимых значений параметров предложенных методов противодействия, позволяющих предотвратить утечку информации ограниченного доступа, понизив дополнительную нагрузку на канал связи. Получены два свидетельства о государственной регистрации программ для ЭВМ, автоматизирующих методы противодействия путем случайного увеличения длин пакетов и генерации фиктивного трафика соответственно. Приведены результаты внедрения результатов диссертационной работы.